Table 1 Simulation parameters

From: A neural implementation model of feedback-based motor learning

Parameter

Definition

Value

dt

Time step

10 ms

τ

Time constant

50 ms

Δ

Feedback delay

120 ms

N

Number of neurons

400

Φ

Nonlinearity

ReLU

y

Neural activity

s

Stimulus

ϵ

Position error

r

Eligibility trace

W

Recurrent weight matrix

b

Recurrent offset

-

Win

Input weight matrix

Wout

Output weight matrix

bout

Output offset

F

Feedback weight matrix

v

Velocity (2D)

p

Position (2D)

α

Gradient Descent: Learning rate

0.001

B

Gradient Descent: batch size

20

β

Gradient Descent: weight regularisation

0.001

γ

Gradient Descent: activity regularisation

0.002

η

Feedback-driven plasticity: learning rate

0.00002

T

Reach trajectories: number of time steps in a trial

300