Table 3 Real-time sleep staging performance across different input segment durations
From: Advancing sleep health equity through deep learning on large-scale nocturnal respiratory signals
Dataset | Segment | Accuracy | F1-score | Kappa | Sensitivity (%) | Inference Time* | MFLOPs* | Training Time* | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | Wake | Light | Deep | REM | / Sleep Period | / Night | |||||
ClinHuaiAn | 1 min | 78.44 | 0.7423 | 0.6585 | 87.75 | 82.10 | 51.85 | 71.22 | 60.70ms | 286.49 | 25.34s |
2 min | 78.97 | 0.7475 | 0.6666 | 87.62 | 82.67 | 50.54 | 73.97 | 61.51ms | 545.46 | 30.54s | |
3 min | 79.72 | 0.7584 | 0.6790 | 88.96 | 82.95 | 53.54 | 73.92 | 62.01ms | 806.26 | 37.14s | |
4 min | 79.75 | 0.7586 | 0.6792 | 88.79 | 83.06 | 53.51 | 73.99 | 62.36ms | 1065.23 | 45.85s | |
5 min | 79.73 | 0.7584 | 0.6789 | 88.72 | 83.06 | 53.51 | 73.99 | 62.46ms | 1329.70 | 54.89s | |
ClinRadar ClinRadar | 1 min | 76.09 | 0.7164 | 0.6227 | 71.96 | 85.53 | 46.36 | 72.19 | 60.70ms | 286.49 | 25.34s |
2 min | 76.30 | 0.7198 | 0.6263 | 72.50 | 85.45 | 47.39 | 72.21 | 61.51ms | 545.46 | 30.54s | |
3 min | 76.27 | 0.7196 | 0.6256 | 72.35 | 85.44 | 47.42 | 72.25 | 62.01ms | 806.26 | 37.14s | |
4 min | 76.26 | 0.7194 | 0.6251 | 72.13 | 85.49 | 47.44 | 72.28 | 62.36ms | 1065.23 | 45.85s | |
5 min | 76.19 | 0.7189 | 0.6240 | 72.09 | 85.34 | 47.49 | 72.29 | 62.46ms | 1329.70 | 54.89s | |