Table 1 Overview of fixed-target systems reported in the literature, including details on X-ray source, analyte, protein concentration, crystal concentration, and sample consumption

From: Sample delivery methods for protein X-ray crystallography with a special focus on sample consumption

Author

Device material

X-ray source, beamline

Analyte

Protein conc. (mg/mL)

Crystal conc. (particles/mL)

Sample consumption [volume/amounta]

Silicon-based fixed-target devices

Zarrine-Afsar et al.88

Si

Swiss Light Source (SLS), X10S A

Lysozyme (1), ferritin (2)

(1) 60, (2) 30

NI

<1 µL/~(1) 0.06 mg, (2) 0.03 mg

Mueller et al.89

Si

SLAC, LCLS, XPP

Thaumatin (1), Proteinase K (2), sperm whale myoglobin

(1) 50, (2) 20, (3) 40–50

NI

0.9–10.35 µL/(1) 0.05–0.52 mg, (2) 0.02–0.21 mg, (3) ~0.04–0.5 mg

Hunter et al.41

Si, Si3N4

SLAC, LCLS, CXI

Rapid encystment protein

14.4

1 × 109

~38 µLb/0.55 mg

Roedig et al.90

Si

Diamond Light Source, I02

Polyhedrin, lysozyme

NI, 50

1–2 × 103

1–3 µL/0.05–0.15 mg

Murray et al.91

Si, Si3N4, Kapton

Stanford Synchrotron Radiation Light Source (SSRL), BL12-2

Lysozyme

20

NI

<2 µL/0.04 mg

Oghbaey et al.79

Si

SLAC, LCLS, XPP

Myoglobin

50–60

NI

60–80 µL/3–4.8 mg

Owen et al.92

Si, Mylar

Diamond Light Source, I24

Orthorhombic sperm whale myoglobin

55–60

NI

60–80 µL/3.3–4.8 mg

Lieske et al.93

Si

SLAC, LCLS, MFX, and CXI

Proteinase K (1), Thermolysin (2)

(1) 15, (2) 20

NI

2–3 µL for roadrunner 1, ~100 µLb for roadrunner 2/(1) 0.05 mg, (2) 0.06 mg for roadrunner 1 and (1) 1.5 mg, (2) 2 mg for roadrunner 2

Tolstikova et al.94

Si

European Synchrotron Radiation Facility (ESRF), ID09

Lysozyme (1), Proteinase K (2)

(1) 40–60, (2) 20

NI

~100 µLb/(1) 4–6 mg, (2) 2 mg

Ebrahim et al.95

Si

Diamond Light Source, I24

Copper nitrite reductase

20

NI

100–200 µL/2–4 mg

Single polymer-based fixed-target devices

Ng et al.96

COC

SSRL, BL1-5

Bacteriorhodopsin

50

NI

30 µL/1.5 mg

Pinker et al.98

COC

SLS, X10SA and X06DA

Lysozyme (1), thaumatin (2), insulin (3)

(1) 50, (2) 30, (3) 20

NI

~2 µLb/(1) 0.1 mg, (2) 0.06 mg, (3) 0.04 mg

De Wijn et al.99

COC

SLS, PXII, and PXIII

ESRF, ID30B

French Synchrotron Facility (SOLEIL), PROXIMA-2A

Protease 1 (1), CCA-adding enzyme (2), lipase (3), Hemoglobin (4)

(1) 7.4, (2) 5.5, (3) 30, (4) 20

NI

~2 µLb/(1) 0.02 mg, (2) 0.01 mg, (3) 0.06 mg, (4) 0.04 mg

Karpik et al. 100

COC

SLS, PXI X06SA

SwissFEL

Lysozyme

50

NI

~2 µLb/0.1 mg

Martiel et al.101

COC

SLS, PXI

Rhodopsin-miniGo

25

3.4 × 106

~2 µLb/0.05 mg

Manna et al.72

COC

ESRF, ID29

Lysozyme

40

NI

30 µL/1.2 mg

Emamzadah et al.105

COP

ESRF, FIP-BM30A

Lysozyme (1), trypsin (2)

(1) 22–30, (2) 25-30

NI

160 µL/ (1) 3.52–4.8 mg, (2) 4–4.8 mg

Cohen et al.106

PC

SSRL

CpI [FeFe]-hydrogenase from Clostridium pasteurianum

30

NI

~2.5 µLb/0.08 mg

Lee et al.108

Kapton

Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL XFEL)

Glucose isomerase (1), lysozyme (2)

(1) NI, (2) 50

3 × 108 (1), 5 × 107 (2)

20 µL/(1) NI, (2) 1 mg

Lee et al.109

Kapton

PAL XFEL, NCI

Proteinase K

80

5 × 107

15.7 µL/1.25 mg

Nam et al.111

Kapton

Pohang Light Source, 11C

Lysozyme

50

NI

~8 µLb/0.4 mg

Illava et al.112

Kapton

National Synchrotron Light Source II, XF17ID2

Cornell High Energy Synchrotron Source (CHESS), ID7B2

fluoroacetate dehalogenase (1), lysozyme (2), human glutaminase C (3)

(1) 18, (2) 100, (3) 20

NI

5–10 µL/(1) 0.09–0.18 mg, (2) 0.5–1 mg, (3) 0.1–0.2 mg

Doak et al.113

Mylar

Spring-8 Ångstrom Compact free-electron Laser (SACLA), BL2

Lysozyme

32

NI

14 µL/0.45 mg

Feld et al.110

SU-8

SLAC, LCLS

Bacteriorhodopsin

1–3

NI

2 µL/0.002–0.01 mg

Saha et al.114

SU-8

SSRL, BL-12-1

Lysozyme (1), Ca2+/calmodulin-dependent protein kinase II ß hub domain (2)

(1) 120, (2) 29

NI

4 µL/(1) 0.48 mg, (2) 0.12 mg

Saha et al.115

SU-8

SSRL, BL-12-1

Lysozyme (1), thaumatin (2), proteinase K (3)

(1) 200, (2) 25, (3) 20

NI

0.5 µL/(1) 0.1 mg, (2) 0.0125 mg, (3) 0.01 mg

Multiple polymer-based fixed-target devices

Dhouib et al.86

PDMS, PMMA, SU-8, COP, COC

ESRF, FIP-BM30A

Lysozyme (1), thaumatin (2)

(1) 80, (2) 34–47

NI

1.2 µL/ (1) 0.10 mg, (2) 0.04–0.06 mg

Guha et al.87

COC, PDMS

LS-CAT, Argonne National Lab

Lysozyme (1), Thaumatin (2), Ribonuclease A

(1) 100, (2) 82, (3) 229

NI

1.4 µL/(1) 0.14 mg, (2) 0.11 mg, (3) 0.32 mg

Khvostichenko et al.116

COC, PDMS

Advanced Photon Source (APS), Argonne

National Lab (ANL), 21-ID-F

Rhodobacter sphaeroides

6

NI

~4 µL/0.2 mg

Lyubimov et al.117

PDMS, PMMA

SLAC, LCLS, XPP

SSRL, BL 12-2

Lysozyme

20

NI

~5 µLb/0.1 mg

Gilbile et al.118

COC, PMMA

SSRL, BL 12-1

Lysozyme (1), thaumatin (2), Concanavalin-A (3), Bovine Liver Catalase (4),

(1) 30, (2) 25, (3) 70, (4) 40

NI

8–10 µL/(1) 0.24–0.3 mg, (2) 0.2–0.25 mg, (3) 0.56–0.7 mg, (4) 0.32–0.4 mg

Liu et al.119

COC, PMMA

SSRL, BL 12-1

SLAC, LCLS, MFX

Lysozyme (1), thaumatin (2),

(1) 50, (2) 25

NI

15 µL/ (1) 0.75 mg, (2) 0.38 mg

Sui et al.120

COC, PMMA, Graphene

APS, ANL, 14-ID-B

Lysozyme

80

NI

16 µL/1.28 mg

Sui et al.121

COC, PMMA, Graphene

University of Massachusetts Amherst Institute for Applied Life Sciences Biophysical Characterization Facility

Lysozyme

80

NI

3.2 µL/ 0.26 mg

Shelby et al.122

PMMA, Graphene

SLAC, LCLS, MFX, CXI

Rapid encystment protein

14.4

2.2 × 106

~20 µLb/0.29 mg

Zhao et al.123

PMMA, Mylar

Shanghai Synchrotron Radiation Facility (SSRF), BL 18U1

Lysozyme (1), proteinase K (2)

(1) 40, (2) 25

NI

~6 µLb/ (1) 0.24 mg, (2) 0.15 mg

Zhao et al.124

PMMA, Mylar

SSRF, BL 18U1

Lysozyme

40

NI

5 µL/0.2 mg

Carrillo et al.125

COC, COP

SwissFEL, SwissMX

Lysozyme

25

3.2 × 108

~1–10 µLb/0.03–0.3 mg

  1. Sample consumption is listed in volume and protein amount. NI refers to data not included. N/A refers to not applicable. Numbers in parentheses refer to more than one analyte reported in a particular publication (and the numbering is defined in the “analyte” column).
  2. aThe protein amount is estimated from the reported protein concentration in the mother liquor, considering that all protein molecules were converted to crystals, taking into account the reported volumes consumed unless otherwise stated.
  3. bFor these fixed-target devices, the sample volumes were not reported and were therefore estimated from the provided device dimensions.