Table 1 Repeat instability rate parameterizations and Bayesian inference results
Model name | Parameters | Functional form | Prior | Bayes factor (ratio to null) | Max posterior [mean posterior] |
|---|---|---|---|---|---|
Symmetric power law† (L < 9 from empirical rates) | 2; \(\theta=(c,\tau)\) | \(\epsilon \left(L > 8\right)=\kappa \left(L > 8\right)=c{\left(\frac{L}{9}\right)}^{\tau }\) | Uniform | 5.1e-18 (1.0) | \(\theta=\)(4.3e-8, 0.6) [(4.3e-8, 0.67)] |
Permissive | 2.8e-21 (1.0) | \(\theta=\)(4.3e-8,1.2) [(4.1e-8, 1.3)] | |||
Restrictive | 7.6e-31 (1.0) | \(\theta=\)(2.7e-8, 3.0) [(3.4e-8, 2.8)] | |||
Decoupled power laws (L < 9 empirical) | 4; \(\theta=({c}_{\epsilon },{c}_{\kappa },{\tau }_{\epsilon },\,{\tau }_{\kappa })\) | \(\epsilon \left(L > 8\right)={c}_{\epsilon }{\left(\frac{L}{9}\right)}^{{\tau }_{\epsilon }}\) \(\kappa \left(L > 8\right)={c}_{\kappa }{\left(\frac{L}{9}\right)}^{{\tau }_{\kappa }}\) | Uniform | 2.0e-5 (3.9e12) | \(\theta=\)(2.7e-8, 1.7e-8, 1.6, 2.0) [(2.9e-8, 1.8e-8, 1.9, 2.3)] |
Permissive | 1.9e-5 (6.9e15) | \(\theta=\)(2.7e-8, 1.7e-8, 3.0, 3.5) [(3.9e-8, 2.5e-8, 2.9, 3.3)] | |||
Restrictive | 2.2e-5 (2.9e25) | \(\theta=\) (4.3e-8, 2.7e-8, 3.1, 3.6) [(4.7e-8, 2.9e-8, 3.1, 3.6)] | |||
Power laws with independent constants (L < 9 empirical) | 3; \(\theta=({c}_{\epsilon },{c}_{\kappa },\tau )\) | \(\epsilon \left(L > 8\right)={c}_{\epsilon }{\left(\frac{L}{9}\right)}^{\tau }\) \(\kappa \left(L > 8\right)={c}_{\kappa }{\left(\frac{L}{9}\right)}^{\tau }\) | Uniform | 1.3e-5 (2.6e12) | \(\theta=\)(1.7e-8, 1.1e-8, 0.9) [(2.0e-8, 1.2e-8, 0.6)] |
Permissive | 9.9e-14 (3.5e7) | \(\theta=\)(1.7e-8, 1.1e-8, 1.0) [(1.7e-8, 1.1e-8, 1.0)] | |||
Restrictive | 2.8e-31 (3.7e-1) | \(\theta=\) (2.7e-8, 2.7e-8, 3.0) [(3.4e-8, 3.4e-8, 2.8)] | |||
Power laws with independent exponents (L < 9 empirical) | 3; \(\theta=(c,{\tau }_{\epsilon },\,{\tau }_{\kappa })\) | \(\epsilon \left(L > 8\right)=c{\left(\frac{L}{9}\right)}^{{\tau }_{\epsilon }}\) \(\kappa \left(L > 8\right)=c{\left(\frac{L}{9}\right)}^{{\tau }_{\kappa }}\) | Uniform | 9.7e-7 (1.9e11) | \(\theta=\)(2.7e-8, 0.6, 0.1) [(2.7e-8, 2.3, 2.1)] |
Permissive | 2.3e-6 (8.2e14) | \(\theta=\)(2.7e-8, 3.4, 3.3) [(2.8e-8, 3.3, 3.2)] | |||
Restrictive | 2.0e-6 (2.6e24) | \(\theta=\) (2.7e-8, 3.6, 3.5) [(2.9e-8, 3.5, 3.4)] | |||
Multiplier-coupled power laws (L < 9 empirical) | 3; \({{{\boldsymbol{\theta }}}}=({{{\boldsymbol{m}}}},{{{{\boldsymbol{\tau }}}}}_{{{{\boldsymbol{\epsilon }}}}},\,{{{{\boldsymbol{\tau }}}}}_{{{{\boldsymbol{\kappa }}}}})\) | \({{{\boldsymbol{\epsilon }}}}\left({{{\boldsymbol{L}}}}{{{\boldsymbol{ > }}}}{{{\bf{8}}}}\right)={{{\boldsymbol{\epsilon }}}}\left({{{\bf{8}}}}\right){{{\boldsymbol{\times }}}}{{{\boldsymbol{m}}}}{\left(\frac{{{{\boldsymbol{L}}}}}{{{{\bf{9}}}}}\right)}^{{{{{\boldsymbol{\tau }}}}}_{{{{\boldsymbol{\epsilon }}}}}}\) \({{{\boldsymbol{\kappa }}}}\left({{{\boldsymbol{L}}}}{{{\boldsymbol{ > }}}}{{{\bf{8}}}}\right)={{{\boldsymbol{\kappa }}}}\left({{{\bf{8}}}}\right){{{\boldsymbol{\times }}}}{{{\boldsymbol{m}}}}{\left(\frac{{{{\boldsymbol{L}}}}}{{{{\bf{9}}}}}\right)}^{{{{{\boldsymbol{\tau }}}}}_{{{{\boldsymbol{\kappa }}}}}}\) (\({{{\boldsymbol{\epsilon }}}}\left({{{\bf{8}}}}\right),\,{{{\boldsymbol{\kappa }}}}\left({{{\bf{8}}}}\right)\) from empirical estimates) | Uniform | 1.8e-4 (3.5e13) | \({{{\boldsymbol{\theta }}}}=\)(2.5, 1.6, 2.0) [(2.7, 1.9, 2.3)] |
Permissive | 1.4e-4 (4.8e16) | \({{{\boldsymbol{\theta }}}}=\)(4.0, 2.8, 3.3) [(3.6, 2.9, 3.3)] | |||
Restrictive | 1.3e-4 (1.7e26) | \({{{\boldsymbol{\theta }}}}=\) (4.0, 3.1, 3.6) [(4.3, 3.1, 3.6)] | |||
Symmetric logarithmic power†† (L < 9 from empirical rates) | 2; \(\theta=(c,\tau )\) | \(\epsilon \left(L > 8\right)=\kappa \left(L > 8\right)\,=c{\left(\frac{\log (L-7)}{\log 2}\right)}^{\tau }\) | Uniform | 8.4e-18 (1.0) | \(\theta=\)(2.7e-8, 0.8) [(3.2e-8, 0.7)] |
Permissive | 3.4e-19 (1.0) | \(\theta=\)(2.7e-8, 0.9) [(3.4e-8, 0.7)] | |||
Restrictive | 8.3e-29 (1.0) | \(\theta=\)(4.3e-8, 1.0) [(4.2e-8, 1.0)] | |||
Decoupled logarithmic power (L < 9 empirical) | 4; \(\theta=({c}_{\epsilon },{c}_{\kappa },{\tau }_{\epsilon },\,{\tau }_{\kappa })\) | \(\epsilon \left(L > 8\right)\,={c}_{\epsilon }{\left(\frac{\log \left(L-7\right)}{\log 2}\right)}^{{\tau }_{\epsilon }}\) \(\kappa \left(L > 8\right)\,={c}_{\kappa }{\left(\frac{\log \left(L-7\right)}{\log 2}\right)}^{{\tau }_{\kappa }}\) | Uniform | 1.8e-4 (2.1e13) | \(\theta=\)(2.7e-8, 1.1e-8, 2.1, 2.8) [(3.4e-8, 1.4e-8, 1.7, 2.4)] |
Permissive | 5.1e-4 (1.5e15) | \(\theta=\)(4.3e-8, 1.7e-8, 2.0, 2.7) [(3.8e-8, 1.4e-8, 2.1, 2.9)] | |||
Restrictive | 1.8e-3 (2.2e25) | \(\theta=\)(4.3e-8, 1.7e-8, 2.0, 2.7) [(3.8e-8, 1.3e-8, 2.2, 3.1)] | |||
Multiplier-coupled logarithmic power (L < 9 empirical) | 3; \(\theta=(m,{\tau }_{\epsilon },\,{\tau }_{\kappa })\) | \(\epsilon \left(L > 8\right)\,=\epsilon \left(8\right){m}{\left(\frac{\log \left(L-7\right)}{\log 2}\right)}^{{\tau }_{\epsilon }}\) \(\kappa \left(L > 8\right)\,=\kappa \left(8\right){m}{\left(\frac{\log \left(L-7\right)}{\log 2}\right)}^{{\tau }_{\kappa }}\) (\(\epsilon \left(8\right),\,\kappa \left(8\right)\) from empirical estimates) | Uniform | 3.9e-4 (4.6e13) | \(\theta=\)(2.5, 1.3, 0.9) [(2.8, 1.0, 1.2)] |
Permissive | 2.7e-4 (7.7e14) | \(\theta=\)(4.0, 1.4, 1.7) [(3.5, 1.5, 1.8)] | |||
Restrictive | 1.7e-4 (2.0e24) | \(\theta=\)(4.0, 1.8, 2.1) [(4.0, 1.9, 2.2)] | |||
Pure power law (parameterized at all lengths) | 4; \(\theta=({\lambda }_{\epsilon },{\lambda }_{\kappa },{\tau }_{\epsilon },\,{\tau }_{\kappa })\) | \(\epsilon \left(L\right)=\mu {\left(\frac{L}{{\lambda }_{\epsilon }}\right)}^{{\tau }_{\epsilon }}\) \(\kappa \left(L\right)=\nu {\left(\frac{L}{{\lambda }_{\kappa }}\right)}^{{\tau }_{\kappa }}\) (empirically estimated sub. rates μ, ν) | Uniform | 3.1e-17 | \(\theta=\)(9, 13, 3.6, 4.0) [(9.1, 12.9, 3.7, 4.0)] |
Restrictive | 8.7e-17 | \(\theta=\)(9, 12, 3.8, 4.0) [(9.0, 12.5, 3.7, 4.0)] |