Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Quantum enhanced metrology based on flipping trajectory of cold Rydberg gases
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

Quantum enhanced metrology based on flipping trajectory of cold Rydberg gases

  • Ya-Jun Wang1,2 na1,
  • Jun Zhang1,2 na1,
  • Zheng-Yuan Zhang1,2 na1,
  • Shi-Yao Shao1,2,
  • Qing Li1,2,
  • Han-Chao Chen1,2,
  • Yu Ma1,2,
  • Tian-Yu Han1,2,
  • Qi-Feng Wang1,2,
  • Jia-Dou Nan1,2,
  • Yi-Ming Yin1,2,
  • Dong-Yang Zhu1,2,
  • Qiao-Qiao Fang1,2,
  • Chao Yu1,2,
  • Xin Liu1,2,
  • Guang-Can Guo1,2,
  • Bang Liu  ORCID: orcid.org/0009-0005-6428-31631,2,
  • Li-Hua Zhang1,2,
  • Dong-Sheng Ding  ORCID: orcid.org/0000-0002-5051-47771,2 &
  • …
  • Bao-Sen Shi  ORCID: orcid.org/0000-0002-5641-61901,2 

Nature Communications , Article number:  (2026) Cite this article

  • 4010 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atomic and molecular interactions with photons
  • Quantum metrology

Abstract

The dynamical trajectory of a dissipative Rydberg many-body system could be flipped under a microwave field driving, displaying an enhanced sensitivity. This is because the intersection of the folded hysteresis trajectories exhibits a sharp peak near the phase transition, amplifying the response to small changes in the microwave field. Here, we demonstrate an experiment of enhanced metrology through flipping the hysteresis trajectory in a cold atomic system, displaying an approach to improve sensitivity by the gap-closing points. By measuring the intersection points of hysteresis trajectories versus Rabi frequency of the microwave field, we quantify the equivalent sensitivity to be 1.6(5) nV cm−1Hz−1/2. The measurement is also dependent on the interaction time, optical depth and principal quantum number since the long-range interaction between Rydberg atoms could dramatically change the shape of hysteresis trajectories. The reported results suggest that flipping trajectory features in cold Rydberg many-body systems could advance sensing and metrology applications.

Similar content being viewed by others

Enhanced metrology at the critical point of a many-body Rydberg atomic system

Article 17 October 2022

Exceptional point and hysteresis trajectories in cold Rydberg atomic gases

Article Open access 13 April 2025

Quantum weak measurement amplifies dispersion signal of Rydberg atomic system

Article Open access 09 April 2025

Data availability

The data generated in this study have been deposited in the Zenodo database (https://zenodo.org/records/17451657).

Code availability

The custom codes used to produce the results presented in this paper are available from the corresponding authors upon request.

References

  1. Jin, B., Su, G. & Zheng, Q.-R. First-and second-order phase transitions, Fulde-Ferrell inhomogeneous state, and quantum criticality in ferromagnet/superconductor double tunnel junctions. Phys. Rev. B 71, 144514 (2005).

    Google Scholar 

  2. Sarkar, S., Mukhopadhyay, C., Alase, A. & Bayat, A. Free-fermionic topological quantum sensors. Phys. Rev. Lett. 129, 090503 (2022).

    Google Scholar 

  3. Li, L., Lee, C. H., Mu, S. & Gong, J. Critical non-hermitian skin effect. Nat. Commun. 11, 5491 (2020).

    Google Scholar 

  4. Zhang, X., Zhang, T., Lu, M.-H. & Chen, Y.-F. A review on non-hermitian skin effect. Adv. Phys.: X 7, 2109431 (2022).

    Google Scholar 

  5. Lee, J. Y., Ahn, J., Zhou, H. & Vishwanath, A. Topological correspondence between hermitian and non-hermitian systems: Anomalous dynamics. Phys. Rev. Lett. 123, 206404 (2019).

    Google Scholar 

  6. De Léséleuc, S. et al. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science 365, 775 (2019).

    Google Scholar 

  7. Porta, S., Cavaliere, F., Sassetti, M. & Traverso Ziani, N. Topological classification of dynamical quantum phase transitions in the xy chain. Sci. Rep. 10, 12766 (2020).

    Google Scholar 

  8. Pérez-Espigares, C., Lesanovsky, I., Garrahan, J. P. & Gutiérrez, R. Glassy dynamics due to a trajectory phase transition in dissipative Rydberg gases. Phys. Rev. A 98, 021804 (2018).

    Google Scholar 

  9. Hao, D. et al. Topological atomic spin wave lattices by dissipative couplings. Phys. Rev. Lett. 130, 153602 (2023).

    Google Scholar 

  10. Wu, X. et al. Dissipative time crystal in a strongly interacting Rydberg gas. Nat. Phys. 1 https://www.nature.com/articles/s41567-024-02542-9 (2024).

  11. Jiang, M. et al. Floquet spin amplification. Phys. Rev. Lett. 128, 233201 (2022).

    Google Scholar 

  12. Liu, B. et al. Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms. Nat. Commun. 15, 9730 (2024).

    Google Scholar 

  13. Liu, B. et al. Bifurcation of time crystals in driven and dissipative Rydberg atomic gas. Nat. Commun. 16, 1419 (2025).

    Google Scholar 

  14. O’Connor, E. et al. Quantum-enhanced parameter estimation in continuously monitored boundary time crystals, arXiv:2508.15448 https://doi.org/10.48550/arXiv.2508.15448 (2025).

  15. Lourenço, J. A., Higgins, G., Zhang, C., Hennrich, M. & Macrì, T. Non-hermitian dynamics and pt-symmetry breaking in interacting mesoscopic Rydberg platforms. Phys. Rev. A 106, 023309 (2022).

    Google Scholar 

  16. Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691 (2023).

    Google Scholar 

  17. Shen, R. et al. Proposal for observing Yang-Lee criticality in Rydberg atomic arrays. Phys. Rev. Lett. 131, 080403 (2023).

    Google Scholar 

  18. Gao, H. et al. Experimental observation of the Yang-Lee quantum criticality in open quantum systems. Phys. Rev. Lett. 132, 176601 (2024).

    Google Scholar 

  19. Wang, Y.-C., You, J.-S. & Jen, H.-H. A non-hermitian optical atomic mirror. Nat. Commun. 13, 4598 (2022).

    Google Scholar 

  20. Li, Z. et al. Synergetic positivity of loss and noise in nonlinear non-Hermitian resonators. Sci. Adv. 9, eadi0562 (2023).

    Google Scholar 

  21. Laflorencie, N. Quantum entanglement in condensed matter systems. Phys. Rep. 646, 1 (2016).

    Google Scholar 

  22. Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281 (2019).

    Google Scholar 

  23. Barik, S. et al. A topological quantum optics interface. Science 359, 666 (2018).

    Google Scholar 

  24. Parto, M., Liu, Y. G., Bahari, B., Khajavikhan, M. & Christodoulides, D. N. Non-hermitian and topological photonics: optics at an exceptional point. Nanophotonics 10, 403 (2020).

    Google Scholar 

  25. Roushan, P. et al. Observation of topological transitions in interacting quantum circuits. Nature 515, 241 (2014).

    Google Scholar 

  26. Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925 (2018).

    Google Scholar 

  27. Yoshida, T., Danshita, I., Peters, R. & Kawakami, N. Reduction of topological Z classification in cold-atom systems. Phys. Rev. Lett. 121, 025301 (2018).

    Google Scholar 

  28. Li, L., Lee, C. H. & Gong, J. Topological switch for non-hermitian skin effect in cold-atom systems with loss. Phys. Rev. Lett. 124, 250402 (2020).

    Google Scholar 

  29. Montenegro, V., Mishra, U. & Bayat, A. Global sensing and its impact for quantum many-body probes with criticality. Phys. Rev. Lett. 126, 200501 (2021).

    Google Scholar 

  30. Ilias, T., Yang, D., Huelga, S. F. & Plenio, M. B. Criticality-enhanced quantum sensing via continuous measurement. PRX Quantum 3, 010354 (2022).

    Google Scholar 

  31. Montenegro, V. et al. Quantum metrology and sensing with many-body systems, arXiv:2408.15323 https://arxiv.org/abs/2408.15323 (2024).

  32. Lau, H.-K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches in non-hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

    Google Scholar 

  33. Budich, J. C. & Bergholtz, E. J. Non-hermitian topological sensors. Phys. Rev. Lett. 125, 180403 (2020).

    Google Scholar 

  34. Koch, F. & Budich, J. C. Quantum non-hermitian topological sensors. Phys. Rev. Res. 4, 013113 (2022).

    Google Scholar 

  35. Sarkar, S., Ciccarello, F., Carollo, A. & Bayat, A. Critical non-hermitian topology induced quantum sensing. N. J. Phys. 26, 073010 (2024).

    Google Scholar 

  36. Sarkar, S., Bayat, A., Bose, S. & Ghosh, R. Exponentially-enhanced quantum sensing with many-body phase transitions. Nat. Commun. 16, 5159 (2025).

    Google Scholar 

  37. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010).

    Google Scholar 

  38. Adams, C. S., Pritchard, J. D. & Shaffer, J. P. Rydberg atom quantum technologies. J. Phys. B: Mol. Opt. Phys. 53, 012002 (2019).

    Google Scholar 

  39. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132 (2020).

    Google Scholar 

  40. Lee, T. E., Häffner, H. & Cross, M. C. Collective quantum jumps of Rydberg atoms. Phys. Rev. Lett. 108, 023602 (2012).

    Google Scholar 

  41. Carr, C., Ritter, R., Wade, C., Adams, C. S. & Weatherill, K. J. Nonequilibrium phase transition in a dilute Rydberg ensemble. Phys. Rev. Lett. 111, 113901 (2013).

    Google Scholar 

  42. Schempp, H. et al. Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry. Phys. Rev. Lett. 112, 013002 (2014).

    Google Scholar 

  43. Marcuzzi, M., Levi, E., Diehl, S., Garrahan, J. P. & Lesanovsky, I. Universal nonequilibrium properties of dissipative Rydberg gases. Phys. Rev. Lett. 113, 210401 (2014).

    Google Scholar 

  44. Lesanovsky, I. & Garrahan, J. P. Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation. Phys. Rev. A 90, 011603 (2014).

    Google Scholar 

  45. Urvoy, A. et al. Strongly correlated growth of Rydberg aggregates in a vapor cell. Phys. Rev. Lett. 114, 203002 (2015).

    Google Scholar 

  46. Helmrich, S. et al. Signatures of self-organized criticality in an ultracold atomic gas. Nature 577, 481 (2020).

    Google Scholar 

  47. Ding, D.-S., Busche, H., Shi, B.-S., Guo, G.-C. & Adams, C. S. Phase diagram of non-equilibrium phase transition in a strongly-interacting Rydberg atom vapour. Phys. Rev. X 10, 021023 (2020).

    Google Scholar 

  48. Wintermantel, T. M. et al. Unitary and nonunitary quantum cellular automata with Rydberg arrays. Phys. Rev. Lett. 124, 070503 (2020).

    Google Scholar 

  49. Klocke, K., Wintermantel, T., Lochead, G., Whitlock, S. & Buchhold, M. Hydrodynamic stabilization of self-organized criticality in a driven Rydberg gas. Phys. Rev. Lett. 126, 123401 (2021).

    Google Scholar 

  50. Gambetta, F. M., Carollo, F., Marcuzzi, M., Garrahan, J. P. & Lesanovsky, I. Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems. Phys. Rev. Lett. 122, 015701 (2019).

    Google Scholar 

  51. Wadenpfuhl, K. & Adams, C. S. Emergence of synchronization in a driven-dissipative hot Rydberg vapor. Phys. Rev. Lett. 131, 143002 (2023).

    Google Scholar 

  52. Ding, D. et al. Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system. Sci. Adv. 10, eadl5893 (2024).

    Google Scholar 

  53. Liu, B. et al. Microwave seeding time crystal in Floquet-driven Rydberg atoms, arXiv:2404.12180 https://arxiv.org/abs/2404.12180 (2024).

  54. Ma, Y. et al. Microwave-driven multistability in a strongly interacting Rydberg atoms, arXiv:2408.10514 https://arxiv.org/abs/2408.10514 (2024).

  55. Samajdar, R., Ho, W. W., Pichler, H., Lukin, M. D. & Sachdev, S. Quantum phases of Rydberg atoms on a kagome lattice. Proc. Natl Acad. Sci. 118, e2015785118 (2021).

    Google Scholar 

  56. Kanungo, S. et al. Realizing topological edge states with Rydberg-atom synthetic dimensions. Nat. Commun. 13, 972 (2022).

    Google Scholar 

  57. Li, K., Wang, J.-H., Yang, Y.-B. & Xu, Y. Symmetry-protected topological phases in a Rydberg glass. Phys. Rev. Lett. 127, 263004 (2021).

    Google Scholar 

  58. Li, X. & Sarma, S. D. Exotic topological density waves in cold atomic Rydberg-dressed fermions. Nat. Commun. 6, 7137 (2015).

    Google Scholar 

  59. Verresen, R., Lukin, M. D. & Vishwanath, A. Prediction of toric code topological order from Rydberg blockade. Phys. Rev. X 11, 031005 (2021).

    Google Scholar 

  60. Sedlacek, J. A. et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 8, 819 (2012).

    Google Scholar 

  61. Jing, M. et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys. 16, 911 (2020).

    Google Scholar 

  62. Ding, D.-S. et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system. Nat. Phys. 18, 1447 (2022).

    Google Scholar 

  63. Liu, B. et al. Highly sensitive measurement of a megahertz rf electric field with a Rydberg-atom sensor. Phys. Rev. Appl. 18, 014045 (2022).

    Google Scholar 

  64. Zhang, L.-H. et al. Rydberg microwave-frequency-comb spectrometer. Phys. Rev. Appl. 18, 014033 (2022).

    Google Scholar 

  65. Zhang, L.-H. et al. Ultra-wide dual-band Rydberg atomic receiver based on space division multiplexing radio-frequency chip modules. Chip 3, 100089 (2024).

    Google Scholar 

  66. Liu, B. et al. Electric field measurement and application based on Rydberg atoms. Electromagn. Sci. 1, 1 (2023).

    Google Scholar 

  67. Zhang, H. et al. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems. Sci. Bull. https://www.sciencedirect.com/science/article/pii/S2095927324001889 (2024).

  68. Delplace, P., Yoshida, T. & Hatsugai, Y. Symmetry-protected multifold exceptional points and their topological characterization. Phys. Rev. Lett. 127, 186602 (2021).

    Google Scholar 

  69. Zhang, J. et al. Exceptional point and hysteresis trajectories in cold Rydberg atomic gases. Nat. Commun. 16, 3511 (2025).

    Google Scholar 

  70. Zhang, Z. et al. Microwave-coupled optical bistability in driven and interacting Rydberg gases. npj Quantum Inf. 11, 44 (2025).

    Google Scholar 

  71. Yuce, C. Stable topological edge states in a non-hermitian four-band model. Phys. Rev. A 98, 012111 (2018).

    Google Scholar 

  72. Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-hermitian ring laser gyroscopes with enhanced sagnac sensitivity. Nature 576, 70 (2019).

    Google Scholar 

  73. Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192 (2017).

    Google Scholar 

  74. Zhang, S. et al. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth. Rev. Sci. Instrum. 83 https://pubs.aip.org/aip/rsi/article/83/7/073102/354527 (2012).

  75. Fancher, C. T., Scherer, D. R., John, M. C. S. & Marlow, B. L. S. Rydberg atom electric field sensors for communications and sensing. IEEE Trans. Quantum Eng. 2, 1 (2021).

    Google Scholar 

  76. Bussey, L. W., Burton, F. A., Bongs, K., Goldwin, J. & Whitley, T. Quantum shot noise limit in a Rydberg rf receiver compared to thermal noise limit in a conventional receiver. IEEE Sens. Lett. 6, 1 (2022).

    Google Scholar 

  77. Simons, M. T., Gordon, J. A. & Holloway, C. L. Simultaneous use of cs and rb Rydberg atoms for dipole moment assessment and rf electric field measurements via electromagnetically induced transparency. J. Appl. Phys. 120 https://pubs.aip.org/aip/jap/article/120/12/123103/345712 (2016).

  78. Šibalić, N., Pritchard, J. D., Adams, C. S. & Weatherill, K. J. Arc: An open-source library for calculating properties of alkali Rydberg atoms. Comput. Phys. Commun. 220, 319 (2017).

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the National Key R and D Program of China (Grant no. 2022YFA1404002), the National Natural Science Foundation of China (Grant nos. T2495253, 62435018), and the Major Science and Technology Projects in Anhui Province (Grant no. 202203a13010001).

Author information

Author notes
  1. These authors contributed equally: Ya-Jun Wang, Jun Zhang, Zheng-Yuan Zhang.

Authors and Affiliations

  1. Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui, China

    Ya-Jun Wang, Jun Zhang, Zheng-Yuan Zhang, Shi-Yao Shao, Qing Li, Han-Chao Chen, Yu Ma, Tian-Yu Han, Qi-Feng Wang, Jia-Dou Nan, Yi-Ming Yin, Dong-Yang Zhu, Qiao-Qiao Fang, Chao Yu, Xin Liu, Guang-Can Guo, Bang Liu, Li-Hua Zhang, Dong-Sheng Ding & Bao-Sen Shi

  2. Anhui Province Key Laboratory of Quantum Network, University of Science and Technology of China, Hefei, China

    Ya-Jun Wang, Jun Zhang, Zheng-Yuan Zhang, Shi-Yao Shao, Qing Li, Han-Chao Chen, Yu Ma, Tian-Yu Han, Qi-Feng Wang, Jia-Dou Nan, Yi-Ming Yin, Dong-Yang Zhu, Qiao-Qiao Fang, Chao Yu, Xin Liu, Guang-Can Guo, Bang Liu, Li-Hua Zhang, Dong-Sheng Ding & Bao-Sen Shi

Authors
  1. Ya-Jun Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Jun Zhang
    View author publications

    Search author on:PubMed Google Scholar

  3. Zheng-Yuan Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Shi-Yao Shao
    View author publications

    Search author on:PubMed Google Scholar

  5. Qing Li
    View author publications

    Search author on:PubMed Google Scholar

  6. Han-Chao Chen
    View author publications

    Search author on:PubMed Google Scholar

  7. Yu Ma
    View author publications

    Search author on:PubMed Google Scholar

  8. Tian-Yu Han
    View author publications

    Search author on:PubMed Google Scholar

  9. Qi-Feng Wang
    View author publications

    Search author on:PubMed Google Scholar

  10. Jia-Dou Nan
    View author publications

    Search author on:PubMed Google Scholar

  11. Yi-Ming Yin
    View author publications

    Search author on:PubMed Google Scholar

  12. Dong-Yang Zhu
    View author publications

    Search author on:PubMed Google Scholar

  13. Qiao-Qiao Fang
    View author publications

    Search author on:PubMed Google Scholar

  14. Chao Yu
    View author publications

    Search author on:PubMed Google Scholar

  15. Xin Liu
    View author publications

    Search author on:PubMed Google Scholar

  16. Guang-Can Guo
    View author publications

    Search author on:PubMed Google Scholar

  17. Bang Liu
    View author publications

    Search author on:PubMed Google Scholar

  18. Li-Hua Zhang
    View author publications

    Search author on:PubMed Google Scholar

  19. Dong-Sheng Ding
    View author publications

    Search author on:PubMed Google Scholar

  20. Bao-Sen Shi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.-S.D., L.-H.Z., and B.L. conceived the idea. J.Z., Y.J.W., and Z.Y.Z. conducted the physical experiments. D.-S.D. and Y.J.W. developed the theoretical model. The data was analyzed with the assistance of S.-Y.S., Q.L., H.-C.C., Y.M., T.-Y.H., Q.-F.W., J.-D.N., Y.-M.Y., D.-Y.Z., Q.-Q.F., Y.C., X.L., G.-C.G., B.L., L.-H.Z. and B.-S.S. The manuscript was written by D.-S.D., Y.J.W., J.Z., and Z.Y.Z. The research was supervised by D.-S.D. All authors contributed to discussions regarding the results and the analysis contained in the manuscript.

Corresponding authors

Correspondence to Bang Liu, Li-Hua Zhang or Dong-Sheng Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Abolfazl Bayat and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YJ., Zhang, J., Zhang, ZY. et al. Quantum enhanced metrology based on flipping trajectory of cold Rydberg gases. Nat Commun (2026). https://doi.org/10.1038/s41467-025-67921-z

Download citation

  • Received: 11 August 2025

  • Accepted: 11 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-67921-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing