Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. review articles
  4. article
Synthetic rewriting technologies in mammalian cells
Download PDF
Download PDF
  • Review Article
  • Open access
  • Published: 13 January 2026

Synthetic rewriting technologies in mammalian cells

  • Yuqi Wang1,2,3 na1,
  • Yali Cui1,2,3 na1,
  • Guang-Rong Zhao  ORCID: orcid.org/0000-0002-3937-22531,2,3,
  • Yi Wu  ORCID: orcid.org/0000-0002-2539-92281,2,3 &
  • …
  • Ying-Jin Yuan  ORCID: orcid.org/0000-0003-0553-00891,2,3 

Nature Communications , Article number:  (2026) Cite this article

  • 3055 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell delivery
  • Genomics

Abstract

Synthetic rewriting technologies, encompassing large-scale DNA assembly, transfer, maintenance, and rearrangement, enabled de novo synthesis or large-scale modifications of genomes. While significant progress has been made in model organisms of viruses, bacteria, and unicellular eukaryotes, their development in mammalian cells faces unique challenges. This review summarizes key breakthroughs in synthetic rewriting technologies, including megabase (Mb)-scale assembly of human DNA, yeast-mediated transfer methods, bottom-up human artificial chromosomes (HACs), and genome-scale rearrangement, along with emerging applications in constructing models and decoding genomes for mammals. These tools will expand functional engineering in mammals and deepen mechanistic insights into complex biological systems.

Similar content being viewed by others

Engineering signalling pathways in mammalian cells

Article 05 September 2024

Enhanced eMAGE applied to identify genetic factors of nuclear hormone receptor dysfunction via combinatorial gene editing

Article Open access 18 June 2024

De novo assembly and delivery of synthetic megabase-scale human DNA into mouse early embryos

Article Open access 10 July 2025

References

  1. Venter, J. C., Glass, J. I., Hutchison, C. A. III & Vashee, S. Synthetic chromosomes, genomes, viruses, and cells. Cell 185, 2708–2724 (2022).

    Google Scholar 

  2. James, J. S., Dai, J., Chew, W. L. & Cai, Y. The design and engineering of synthetic genomes. Nat. Rev. Genet. 26, 298–319 (2025).

    Google Scholar 

  3. Chari, R. & Church, G. M. Beyond editing to writing large genomes. Nat. Rev. Genet. 18, 749–760 (2017).

    Google Scholar 

  4. Zhang, W., Mitchell, L. A., Bader, J. S. & Boeke, J. D. Synthetic Genomes. Annu. Rev. Biochem. 89, 77–101 (2020).

    Google Scholar 

  5. Schindler, D., Dai, J. & Cai, Y. Synthetic genomics: a new venture to dissect genome fundamentals and engineer new functions. Curr. Opin. Chem. Biol. 46, 56–62 (2018).

    Google Scholar 

  6. Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).

    Google Scholar 

  7. Ostrov, N. et al. Design, synthesis, and testing toward a 57-codon genome. Science 353, 819–822 (2016).

    Google Scholar 

  8. Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013).

    Google Scholar 

  9. Wang, K. et al. Defining synonymous codon compression schemes by genome recoding. Nature 539, 59–64 (2016).

    Google Scholar 

  10. Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016).

    Google Scholar 

  11. Pelletier, J. F. et al. Genetic requirements for cell division in a genomically minimal cell. Cell 184, 2430–2440 (2021).

    Google Scholar 

  12. Thornburg, Z. R. et al. Fundamental behaviors emerge from simulations of a living minimal cell. Cell 185, 345–360 (2022).

    Google Scholar 

  13. Luo, Z. et al. Compacting a synthetic yeast chromosome arm. Genome Biol. 22, 5 (2021).

    Google Scholar 

  14. Jiang, S. et al. Building a eukaryotic chromosome arm by de novo design and synthesis. Nat. Commun. 14, 7886 (2023).

    Google Scholar 

  15. Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).

    Google Scholar 

  16. Dai, J., Boeke, J. D., Luo, Z., Jiang, S. & Cai, Y. Sc3.0: revamping and minimizing the yeast genome. Genome Biol. 21, 205 (2020).

    Google Scholar 

  17. Ma, Y. et al. Convenient synthesis and delivery of a megabase-scale designer accessory chromosome empower biosynthetic capacity. Cell Res 34, 309–322 (2024).

    Google Scholar 

  18. Dormitzer, P. R. et al. Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci. Transl. Med. 5, 185ra168 (2013).

    Google Scholar 

  19. Thi Nhu Thao, T. et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 582, 561–565 (2020).

    Google Scholar 

  20. Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    Google Scholar 

  21. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Google Scholar 

  22. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Google Scholar 

  23. Robertson, W. E. et al. Escherichia coli with a 57-codon genetic code. Science 390, eady4368 (2025).

    Google Scholar 

  24. Zhou, S. et al. Dynamics of synthetic yeast chromosome evolution shaped by hierarchical chromatin organization. Natl. Sci. Rev. 10, nwad073 (2023).

    Google Scholar 

  25. Zhao, Y. et al. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell 186, 5220–5236 (2023).

    Google Scholar 

  26. Zhang, W. et al. Manipulating the 3D organization of the largest synthetic yeast chromosome. Mol. Cell 83, 4424–4437 (2023).

    Google Scholar 

  27. Luo, J. et al. Synthetic chromosome fusion: Effects on mitotic and meiotic genome structure and function. Cell Genom. 3, 100439 (2023).

    Google Scholar 

  28. Foo, J. L. et al. Establishing chromosomal design-build-test-learn through a synthetic chromosome and its combinatorial reconfiguration. Cell Genom. 3, 100435 (2023).

    Google Scholar 

  29. Shen, Y. et al. Dissecting aneuploidy phenotypes by constructing Sc2.0 chromosome VII and SCRaMbLEing synthetic disomic yeast. Cell Genom. 3, 100364 (2023).

    Google Scholar 

  30. Williams, T. C. et al. Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects. Cell Genom. 3, 100379 (2023).

    Google Scholar 

  31. McCulloch, L. H. et al. Consequences of a telomerase-related fitness defect and chromosome substitution technology in yeast synIX strains. Cell Genom. 3, 100419 (2023).

    Google Scholar 

  32. Blount, B. A. et al. Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics. Cell Genom. 3, 100418 (2023).

    Google Scholar 

  33. Lauer, S. et al. Context-dependent neocentromere activity in synthetic yeast chromosome VIII. Cell Genom. 3, 100437 (2023).

    Google Scholar 

  34. Schindler, D. et al. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell 186, 5237–5253 (2023).

    Google Scholar 

  35. Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021).

    Google Scholar 

  36. Nyerges, A. et al. A swapped genetic code prevents viral infections and gene transfer. Nature 615, 720–727 (2023).

    Google Scholar 

  37. Zürcher, J. F. et al. Refactored genetic codes enable bidirectional genetic isolation. Science 378, 516–523 (2022).

    Google Scholar 

  38. Grome, M. W. et al. Engineering a genomically recoded organism with one stop codon. Nature 639, 512–521 (2025).

    Google Scholar 

  39. Boeke, J. D. et al. The genome project-write. Science 353, 126–127 (2016).

    Google Scholar 

  40. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Google Scholar 

  41. Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    Google Scholar 

  42. Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Science 376, eabl3533 (2022).

    Google Scholar 

  43. Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    Google Scholar 

  44. Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).

    Google Scholar 

  45. Church, D. M. A next-generation human genome sequence. Science 376, 34–35 (2022).

    Google Scholar 

  46. Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).

    Google Scholar 

  47. He, B. et al. YLC-assembly: large DNA assembly via yeast life cycle. Nucleic Acids Res. 51, 8283–8292 (2023).

    Google Scholar 

  48. Ma, Y. et al. Assembly and delivery of large DNA via chromosome elimination in yeast. Nat. Protoc. 20, 3755–3782 (2025).

    Google Scholar 

  49. Zürcher, J. F. et al. Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly. Nature 619, 555–562 (2023).

    Google Scholar 

  50. Zhong, L. et al. The conjugation-associated linear-BAC iterative assembling (CALBIA) method for cloning 2.1-Mb human chromosomal DNAs in bacteria. Cell Res. 35, 309–312 (2025).

    Google Scholar 

  51. Liu, Y. et al. De novo assembly and delivery of synthetic megabase-scale human DNA into mouse early embryos. Nat. Methods 22, 1686–1697 (2025).

    Google Scholar 

  52. Gambogi, C. W. et al. Efficient formation of single-copy human artificial chromosomes. Science 383, 1344–1349 (2024).

    Google Scholar 

  53. Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).

    Google Scholar 

  54. Pandey, S. et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nat. Biomed. Eng. 9, 22–39 (2025).

    Google Scholar 

  55. Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

    Google Scholar 

  56. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Google Scholar 

  57. Fell, C. W. et al. Reprogramming site-specific retrotransposon activity to new DNA sites. Nature 642, 1080–1089 (2025).

    Google Scholar 

  58. Witte, I. P. et al. Programmable gene insertion in human cells with a laboratory-evolved CRISPR-associated transposase. Science 388, eadt5199 (2025).

    Google Scholar 

  59. Zhang, W. et al. Mouse genome rewriting and tailoring of three important disease loci. Nature 623, 423–431 (2023).

    Google Scholar 

  60. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS One 3, e3647 (2008).

    Google Scholar 

  61. Shetty, R. P., Endy, D. & Knight, T. F. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).

    Google Scholar 

  62. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Google Scholar 

  63. Zhang, R. et al. Amplification editing enables efficient and precise duplication of DNA from short sequence to megabase and chromosomal scale. Cell 187, 3936–3952 (2024).

    Google Scholar 

  64. Cui, Y., Wu, Y. & Yuan, Y. Amplification editing empowers in situ large-scale DNA duplication. Innovation 5, 100716 (2024).

    Google Scholar 

  65. O’Connor, M., Peifer, M. & Bender, W. Construction of large DNA segments in Escherichia coli. Science 244, 1307–1312 (1989).

    Google Scholar 

  66. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Google Scholar 

  67. Wannier, T. M. et al. Improved bacterial recombineering by parallelized protein discovery. Proc. Natl. Acad. Sci. USA 117, 13689–13698 (2020).

    Google Scholar 

  68. Zhang, Y., Buchholz, F., Muyrers, J. P. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Google Scholar 

  69. Robertson, W. E. et al. Creating custom synthetic genomes in Escherichia coli with REXER and GENESIS. Nat. Protoc. 16, 2345–2380 (2021).

    Google Scholar 

  70. Wang, T. et al. Reconstruction of a robust bacterial replication module. Nucleic Acids Res. 52, 11394–11407 (2024).

    Google Scholar 

  71. Mitchell, L. A. et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 355, eaaf4831 (2017).

    Google Scholar 

  72. Shen, Y. et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science 355, eaaf4791 (2017).

    Google Scholar 

  73. Xie, Z.-X. et al. “Perfect” designer chromosome V and behavior of a ring derivative. Science 355, eaaf4704 (2017).

    Google Scholar 

  74. Wu, Y. et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science 355, eaaf4706 (2017).

    Google Scholar 

  75. Zhang, W. et al. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science 355, eaaf3981 (2017).

    Google Scholar 

  76. Zhou, J., Wu, R., Xue, X. & Qin, Z. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA. Nucleic Acids Res. 44, e124 (2016).

    Google Scholar 

  77. de Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).

    Google Scholar 

  78. Jurka, J., Kapitonov, V. V., Kohany, O. & Jurka, M. V. Repetitive sequences in complex genomes: structure and evolution. Annu. Rev. Genomics Hum. Genet. 8, 241–259 (2007).

    Google Scholar 

  79. Martens, U. M. et al. Short telomeres on human chromosome 17p. Nat. Genet. 18, 76–80 (1998).

    Google Scholar 

  80. Logsdon, G. A. et al. The structure, function and evolution of a complete human chromosome 8. Nature 593, 101–107 (2021).

    Google Scholar 

  81. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Google Scholar 

  82. Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001).

    Google Scholar 

  83. Blackburn, E. H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    Google Scholar 

  84. Payer, L. M. & Burns, K. H. Transposable elements in human genetic disease. Nat. Rev. Genet. 20, 760–772 (2019).

    Google Scholar 

  85. Ebersole, T. et al. Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucleic Acids Res. 33, e130 (2005).

    Google Scholar 

  86. Jiang, S. et al. High plasticity of ribosomal DNA organization in budding yeast. Cell Rep. 43, 113742 (2024).

    Google Scholar 

  87. Chen, Y. et al. Multiplex base editing to convert TAG into TAA codons in the human genome. Nat. Commun. 13, 4482 (2022).

    Google Scholar 

  88. Yuan, Q. & Gao, X. Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nat. Commun. 13, 2771 (2022).

    Google Scholar 

  89. Basu, J., Stromberg, G., Compitello, G., Willard, H. F. & van Bokkelen, G. Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res. 33, 587–596 (2005).

    Google Scholar 

  90. Harrington, J. J., Bokkelen, G. V., Mays, R. W., Gustashaw, K. & Willard, H. F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15, 345–355 (1997).

    Google Scholar 

  91. Ohzeki, J., Nakano, M., Okada, T. & Masumoto, H. CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J. Cell Biol. 159, 765–775 (2002).

    Google Scholar 

  92. Lamb, B. T. et al. Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice [corrected]. Nat. Genet. 5, 22–30 (1993).

    Google Scholar 

  93. Mejía, J. E., Willmott, A., Levy, E., Earnshaw, W. C. & Larin, Z. Functional complementation of a genetic deficiency with human artificial chromosomes. Am. J. Hum. Genet. 69, 315–326 (2001).

    Google Scholar 

  94. Lee, E. C. et al. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat. Biotechnol. 32, 356–363 (2014).

    Google Scholar 

  95. Gnirke, A., Huxley, C., Peterson, K. & Olson, M. V. Microinjection of intact 200- to 500-kb fragments of YAC DNA into mammalian cells. Genomics 15, 659–667 (1993).

    Google Scholar 

  96. Schiedner, G. et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat. Genet. 18, 180–183 (1998).

    Google Scholar 

  97. Wade-Martins, R., Smith, E. R., Tyminski, E., Chiocca, E. A. & Saeki, Y. An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat. Biotechnol. 19, 1067–1070 (2001).

    Google Scholar 

  98. Moralli, D. & Monaco, Z. L. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology. Chromosome Res 23, 105–110 (2015).

    Google Scholar 

  99. White, R. E., Wade-Martins, R. & James, M. R. Infectious delivery of 120-kilobase genomic DNA by an epstein-barr virus amplicon vector. Mol. Ther. 5, 427–435 (2002).

    Google Scholar 

  100. Marschall, P., Malik, N. & Larin, Z. Transfer of YACs up to 2.3Mb intact into human cells with polyethylenimine. Gene Ther. 6, 1634–1637 (1999).

    Google Scholar 

  101. Suzuki, N., Itou, T., Hasegawa, Y., Okazaki, T. & Ikeno, M. Cell to cell transfer of the chromatin-packaged human β-globin gene cluster. Nucleic Acids Res. 38, e33 (2010).

    Google Scholar 

  102. Fournier, R. E. & Ruddle, F. H. Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc. Natl. Acad. Sci. USA 74, 319–323 (1977).

    Google Scholar 

  103. Liskovykh, M., Lee, N. C., Larionov, V. & Kouprina, N. Moving toward a higher efficiency of microcell-mediated chromosome transfer. Mol. Ther. Methods Clin. Dev. 3, 16043 (2016).

    Google Scholar 

  104. Yamaguchi, S. et al. A new method of microcell-mediated transfer of human artificial chromosomes using a hemagglutinating virus of Japan envelope. Chromosome Sci. 9, 65–73 (2006).

    Google Scholar 

  105. Katoh, M. et al. Exploitation of the interaction of measles virus fusogenic envelope proteins with the surface receptor CD46 on human cells for microcell-mediated chromosome transfer. BMC Biotechnol. 10, 37 (2010).

    Google Scholar 

  106. Hiratsuka, M. et al. Retargeting of microcell fusion towards recipient cell-oriented transfer of human artificial chromosome. BMC Biotechnol. 15, 58 (2015).

    Google Scholar 

  107. Suzuki, T., Kazuki, Y., Oshimura, M. & Hara, T. Highly efficient transfer of chromosomes to a broad range of target cells using chinese hamster ovary cells expressing murine leukemia virus-derived envelope proteins. PLoS One 11, e0157187 (2016).

    Google Scholar 

  108. Uno, N. et al. The transfer of human artificial chromosomes via cryopreserved microcells. Cytotechnology 65, 803–809 (2013).

    Google Scholar 

  109. Allshire, R. C. et al. A fission yeast chromosome can replicate autonomously in mouse cells. Cell 50, 391–403 (1987).

    Google Scholar 

  110. Zhang, X. F. et al. Transfer of an expression YAC into goat fetal fibroblasts by cell fusion for mammary gland bioreactor. Biochem. Biophys. Res. Commun. 333, 58–63 (2005).

    Google Scholar 

  111. Huxley, C., Hagino, Y., Schlessinger, D. & Olson, M. V. The human HPRT gene on a yeast artificial chromosome is functional when transferred to mouse cells by cell fusion. Genomics 9, 742–750 (1991).

    Google Scholar 

  112. Jülicher, K. et al. Yeast artificial chromosome transfer into human renal carcinoma cells by spheroplast fusion. Genomics 43, 95–98 (1997).

    Google Scholar 

  113. Li, L. & Blankenstein, T. Generation of transgenic mice with megabase-sized human yeast artificial chromosomes by yeast spheroplast-embryonic stem cell fusion. Nat. Protoc. 8, 1567–1582 (2013).

    Google Scholar 

  114. Pachnis, V., Pevny, L., Rothstein, R. & Costantini, F. Transfer of a yeast artificial chromosome carrying human DNA from Saccharomyces cerevisiae into mammalian cells. Proc. Natl. Acad. Sci. USA 87, 5109–5113 (1990).

    Google Scholar 

  115. Brown, D. M. et al. Efficient size-independent chromosome delivery from yeast to cultured cell lines. Nucleic Acids Res. 45, e50 (2017).

    Google Scholar 

  116. Li, L. P. et al. Transgenic mice with a diverse human T cell antigen receptor repertoire. Nat. Med. 16, 1029–1034 (2010).

    Google Scholar 

  117. Itaya, M. et al. Far rapid synthesis of giant DNA in the Bacillus subtilis genome by a conjugation transfer system. Sci. Rep. 8, 8792 (2018).

    Google Scholar 

  118. Lacroix, B. & Citovsky, V. Transfer of DNA from bacteria to eukaryotes. mBio 7, e00863–16 (2016).

    Google Scholar 

  119. Waters, V. L. Conjugation between bacterial and mammalian cells. Nat. Genet. 29, 375–376 (2001).

    Google Scholar 

  120. Kunik, T. et al. Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA 98, 1871–1876 (2001).

    Google Scholar 

  121. Sizemore, D. R., Branstrom, A. A. & Sadoff, J. C. Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270, 299–302 (1995).

    Google Scholar 

  122. Krusch, S. et al. Listeria monocytogenes mediated CFTR transgene transfer to mammalian cells. J. Gene Med. 4, 655–667 (2002).

    Google Scholar 

  123. Weiss, S. & Krusch, S. Bacteria-mediated transfer of eukaryotic expression plasmids into mammalian host cells. Biol. Chem. 382, 533–541 (2001).

    Google Scholar 

  124. Dietrich, G. et al. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat. Biotechnol. 16, 181–185 (1998).

    Google Scholar 

  125. Narayanan, K. & Warburton, P. E. DNA modification and functional delivery into human cells using Escherichia coli DH10B. Nucleic Acids Res 31, e51 (2003).

    Google Scholar 

  126. Grillot-Courvalin, C., Goussard, S., Huetz, F., Ojcius, D. M. & Courvalin, P. Functional gene transfer from intracellular bacteria to mammalian cells. Nat. Biotechnol. 16, 862–866 (1998).

    Google Scholar 

  127. Jacobs, R., Singh, P., Smith, T., Arbuthnot, P. & Maepa, M. B. Prospects of viral vector-mediated delivery of sequences encoding anti-HBV designer endonucleases. Gene Ther. 32, 8–15 (2025).

    Google Scholar 

  128. Mandegar, M. A. et al. Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells. Hum. Mol. Genet. 20, 2905–2913 (2011).

    Google Scholar 

  129. Schedl, A., Montoliu, L., Kelsey, G. & Schütz, G. A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 362, 258–261 (1993).

    Google Scholar 

  130. Iacovino, M. et al. Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells. Stem Cells 29, 1580–1588 (2011).

    Google Scholar 

  131. Zhu, F. et al. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res. 42, e34 (2014).

    Google Scholar 

  132. Bouhassira, E. E., Westerman, K. & Leboulch, P. Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 90, 3332–3344 (1997).

    Google Scholar 

  133. Wallace, H. A. et al. Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 128, 197–209 (2007).

    Google Scholar 

  134. Brosh, R. et al. A versatile platform for locus-scale genome rewriting and verification. Proc. Natl. Acad. Sci. USA 118, e2023952118 (2021).

    Google Scholar 

  135. Macdonald, L. E. et al. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc. Natl. Acad. Sci. USA 111, 5147–5152 (2014).

    Google Scholar 

  136. Moore, M. J. et al. Humanization of T cell-mediated immunity in mice. Sci. Immunol. 6, eabj4026 (2021).

    Google Scholar 

  137. Dymond, J. S. et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477, 471–476 (2011).

    Google Scholar 

  138. Sun, C. et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol. 42, 316–327 (2024).

    Google Scholar 

  139. Zhang, X. et al. Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci. Nat. Biotechnol. 43, 42–51 (2025).

    Google Scholar 

  140. Chen, Y. et al. All-RNA-mediated targeted gene integration in mammalian cells with rationally engineered R2 retrotransposons. Cell 187, 4674–4689 (2024).

    Google Scholar 

  141. Katoh, M. et al. Construction of a novel human artificial chromosome vector for gene delivery. Biochem. Biophys. Res. Commun. 321, 280–290 (2004).

    Google Scholar 

  142. Kakeda, M. et al. A new chromosome 14-based human artificial chromosome (HAC) vector system for efficient transgene expression in human primary cells. Biochem. Biophys. Res. Commun. 415, 439–444 (2011).

    Google Scholar 

  143. Mills, W., Critcher, R., Lee, C. & Farr, C. J. Generation of an ∼2.4Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum. Mol. Genet. 8, 751–761 (1999).

    Google Scholar 

  144. Heller, R., Brown, K. E., Burgtorf, C. & Brown, W. R. Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc. Natl. Acad. Sci. USA 93, 7125–7130 (1996).

    Google Scholar 

  145. Laner, A., Schwarz, T., Christan, S. & Schindelhauer, D. Suitability of a CMV/EGFP cassette to monitor stable expression from human artificial chromosomes but not transient transfer in the cells forming viable clones. Cytogenet. Genome Res. 107, 9–13 (2004).

    Google Scholar 

  146. Ikeno, M. et al. Construction of YAC–based mammalian artificial chromosomes. Nat. Biotechnol. 16, 431–439 (1998).

    Google Scholar 

  147. Kouprina, N. et al. Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res. 31, 922–934 (2003).

    Google Scholar 

  148. Okamoto, Y., Nakano, M., Ohzeki, J., Larionov, V. & Masumoto, H. A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. Embo J. 26, 1279–1291 (2007).

    Google Scholar 

  149. Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14, 507–522 (2008).

    Google Scholar 

  150. Ohzeki, J. et al. Breaking the HAC Barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. Embo J. 31, 2391–2402 (2012).

    Google Scholar 

  151. Kouprina, N. et al. Organization of synthetic alphoid DNA array in human artificial chromosome (HAC) with a conditional centromere. ACS Synth. Biol. 1, 590–601 (2012).

    Google Scholar 

  152. Iida, Y. et al. Human artificial chromosome with a conditional centromere for gene delivery and gene expression. DNA Res. 17, 293–301 (2010).

    Google Scholar 

  153. Kononenko, A. V. et al. A portable BRCA1-HAC (human artificial chromosome) module for analysis of BRCA1 tumor suppressor function. Nucleic Acids Res. 42, e164 (2014).

    Google Scholar 

  154. Kim, J.-H. et al. Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. Proc. Natl. Acad. Sci. USA 108, 20048–20053 (2011).

    Google Scholar 

  155. Lee, N. C. O. et al. Protecting a transgene expression from the HAC-based vector by different chromatin insulators. Cell. Mol. Life Sci. 70, 3723–3737 (2013).

    Google Scholar 

  156. Liskovykh, M. et al. Stable maintenance of de novo assembled human artificial chromosomes in embryonic stem cells and their differentiated progeny in mice. Cell Cycle 14, 1268–1273 (2015).

    Google Scholar 

  157. Wudzinska, A. et al. Germline Transmission of a Circular Human Artificial Chromosome in the Mouse. Preprint at https://doi.org/10.1101/2022.06.22.496420 (2022).

  158. Logsdon, G. A. et al. Human artificial chromosomes that bypass centromeric DNA. Cell 178, 624–639.e619 (2019).

    Google Scholar 

  159. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Google Scholar 

  160. Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 14, 125–138 (2013).

    Google Scholar 

  161. Kilby, N. J., Snaith, M. R. & Murray, J. A. Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421 (1993).

    Google Scholar 

  162. Ma, L. et al. SCRaMbLE generates evolved yeasts with increased alkali tolerance. Microb. Cell Fact. 18, 52 (2019).

    Google Scholar 

  163. Liu, W. et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nat. Commun. 9, 1936 (2018).

    Google Scholar 

  164. Jia, B. et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nat. Commun. 9, 1933 (2018).

    Google Scholar 

  165. Blount, B. A. et al. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat. Commun. 9, 1932 (2018).

    Google Scholar 

  166. Wu, Y. et al. In vitro DNA SCRaMbLE. Nat. Commun. 9, 1935 (2018).

    Google Scholar 

  167. Wang, J. et al. Ring synthetic chromosome V SCRaMbLE. Nat. Commun. 9, 3783 (2018).

    Google Scholar 

  168. Gowers, G. O. F. et al. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening. Nat. Commun. 11, 868 (2020).

    Google Scholar 

  169. Cheng, L. et al. Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae. Nat. Commun. 15, 770 (2024).

    Google Scholar 

  170. Luo, Z. et al. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nat. Commun. 9, 1930 (2018).

    Google Scholar 

  171. Yin, H. et al. Inducible chromosomal rearrangement reveals nonlinear polygenic dosage effects in driving aneuploid yeast traits. Nat. Commun. 16, 10884 (2025).

    Google Scholar 

  172. Koeppel, J. et al. Resolution of a human super-enhancer by targeted genome randomisation. Preprint at https://doi.org/10.1101/2025.01.14.632548 (2025).

  173. Koeppel, J. et al. Randomizing the human genome by engineering recombination between repeat elements. Science 387, eado3979 (2025).

    Google Scholar 

  174. Sun, C. et al. Iterative recombinase technologies for efficient and precise genome engineering across kilobase to megabase scales. Cell 188, 4693–4710 (2025).

    Google Scholar 

  175. Pinglay, S. et al. Multiplex generation and single-cell analysis of structural variants in mammalian genomes. Science 387, eado5978 (2025).

    Google Scholar 

  176. Li, J. et al. Creation of a eukaryotic multiplexed site-specific inversion system and its application for metabolic engineering. Nat. Commun. 16, 1918 (2025).

    Google Scholar 

  177. Wang, L.-B. et al. A sustainable mouse karyotype created by programmed chromosome fusion. Science 377, 967–975 (2022).

    Google Scholar 

  178. Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).

    Google Scholar 

  179. Zhang, X. M. et al. Creation of artificial karyotypes in mice reveals robustness of genome organization. Cell Res 32, 1026–1029 (2022).

    Google Scholar 

  180. Murillo-Pineda, M. et al. Induction of spontaneous human neocentromere formation and long-term maturation. J. Cell Biol. 220, e202007210 (2021).

    Google Scholar 

  181. Liu, Y. et al. Global chromosome rearrangement induced by CRISPR-Cas9 reshapes the genome and transcriptome of human cells. Nucleic Acids Res. 50, 3456–3474 (2022).

    Google Scholar 

  182. Durrant, M. G. et al. Bridge RNAs direct programmable recombination of target and donor DNA. Nature 630, 984–993 (2024).

    Google Scholar 

  183. Perry, N. T. et al. Megabase-scale human genome rearrangement with programmable bridge recombinases. Science 387, adz0276 (2025).

    Google Scholar 

  184. Kazuki, Y. et al. Complete genetic correction of ips cells from Duchenne muscular dystrophy. Mol. Ther. 18, 386–393 (2010).

    Google Scholar 

  185. Murphy, A. J. et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc. Natl. Acad. Sci. USA 111, 5153–5158 (2014).

    Google Scholar 

  186. Tosh, J., Tybulewicz, V. & Fisher, E. M. C. Mouse models of aneuploidy to understand chromosome disorders. Mamm. Genome 33, 157–168 (2022).

    Google Scholar 

  187. O’Doherty, A. et al. An aneuploid mouse strain carrying human chromosome 21 with down syndrome phenotypes. Science 309, 2033–2037 (2005).

    Google Scholar 

  188. Kazuki, Y. et al. A non-mosaic transchromosomic mouse model of down syndrome carrying the long arm of human chromosome 21. eLife 9, e56223 (2020).

    Google Scholar 

  189. Adikusuma, F., Williams, N., Grutzner, F., Hughes, J. & Thomas, P. Targeted deletion of an entire chromosome using CRISPR/Cas9. Mol. Ther. 25, 1736–1738 (2017).

    Google Scholar 

  190. Zuo, E. et al. CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biol. 18, 224 (2017).

    Google Scholar 

  191. Ling, H., Girnita, L., Buda, O. & Calin, G. A. Non-coding RNAs: the cancer genome dark matter that matters!. Clin. Chem. Lab. Med. 55, 705–714 (2017).

    Google Scholar 

  192. Ruffo, P., Traynor, B. J. & Conforti, F. L. Unveiling the regulatory potential of the non-coding genome: insights from the human genome project to precision medicine. Genes Dis. 12, 101652 (2025).

    Google Scholar 

  193. Fulco, C. P. et al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    Google Scholar 

  194. Blayney, J. W. et al. Super-enhancers include classical enhancers and facilitators to fully activate gene expression. Cell 186, 5826–5839 (2023).

    Google Scholar 

  195. Brosh, R. et al. Synthetic regulatory genomics uncovers enhancer context dependence at the Sox2 locus. Mol. Cell 83, 1140–1152 (2023).

    Google Scholar 

  196. Camellato, B. R., Brosh, R., Ashe, H. J., Maurano, M. T. & Boeke, J. D. Synthetic reversed sequences reveal default genomic states. Nature 628, 373–380 (2024).

    Google Scholar 

  197. Pinglay, S. et al. Synthetic regulatory reconstitution reveals principles of mammalian Hox cluster regulation. Science 377, eabk2820 (2022).

    Google Scholar 

  198. Wang, Y. et al. Chromosome territory reorganization through artificial chromosome fusion is compatible with cell fate determination and mouse development. Cell Discov. 9, 11 (2023).

    Google Scholar 

  199. Shao, Y. et al. Creating a functional single-chromosome yeast. Nature 560, 331–335 (2018).

    Google Scholar 

  200. Shao, Y. et al. A single circular chromosome yeast. Cell Res 29, 87–89 (2019).

    Google Scholar 

  201. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115–130 (2017).

    Google Scholar 

  202. Yang, H. et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605–617 (2012).

    Google Scholar 

  203. Li, Z. K. et al. Generation of bimaternal and bipaternal mice from hypomethylated haploid ESCs with imprinting region deletions. Cell Stem Cell 23, 665–676 (2018).

    Google Scholar 

  204. Li, Z. K. et al. Adult bi-paternal offspring generated through direct modification of imprinted genes in mammals. Cell Stem Cell 32, 361–374 (2025).

    Google Scholar 

  205. Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).

    Google Scholar 

  206. Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).

    Google Scholar 

  207. de Boer, C. G. et al. Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nat. Biotechnol. 38, 56–65 (2020).

    Google Scholar 

  208. Fu, Z. H., He, S. Z., Wu, Y. & Zhao, G. R. Design and deep learning of synthetic B-cell-specific promoters. Nucleic Acids Res. 51, 11967–11979 (2023).

    Google Scholar 

  209. Callaway, E. DeepMind’s new AlphaGenome AI tackles the ‘dark matter’ in our DNA. Nature 643, 17–18 (2025).

    Google Scholar 

  210. Brixi, G. et al. Genome modeling and design across all domains of life with Evo 2. Preprint at https://doi.org/10.1101/2025.02.18.638918 (2025).

  211. Merchant, A. T., King, S. H., Nguyen, E. & Hie, B. L. Semantic design of functional de novo genes from a genomic language model. Nature (2025).

  212. Jones, T. S., Oliveira, S. M. D., Myers, C. J., Voigt, C. A. & Densmore, D. Genetic circuit design automation with Cello 2.0. Nat. Protoc. 17, 1097–1113 (2022).

    Google Scholar 

Download references

Acknowledgements

This manuscript was supported by the National Key R&D Program of China [2024YFA0917400 for Y.W.], the National Natural Science Foundation of China [32471483 for Y.W.], and the Natural Science Foundation of Tianjin [23JCYBJC00220 for Y.W.].

Author information

Author notes
  1. These authors contributed equally: Yuqi Wang, Yali Cui.

Authors and Affiliations

  1. State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China

    Yuqi Wang, Yali Cui, Guang-Rong Zhao, Yi Wu & Ying-Jin Yuan

  2. Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering 9 (Ministry of Education), School of Synthetic Biology and Biomanufacturing, Tianjin University, 10 Tianjin, China

    Yuqi Wang, Yali Cui, Guang-Rong Zhao, Yi Wu & Ying-Jin Yuan

  3. Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China

    Yuqi Wang, Yali Cui, Guang-Rong Zhao, Yi Wu & Ying-Jin Yuan

Authors
  1. Yuqi Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Yali Cui
    View author publications

    Search author on:PubMed Google Scholar

  3. Guang-Rong Zhao
    View author publications

    Search author on:PubMed Google Scholar

  4. Yi Wu
    View author publications

    Search author on:PubMed Google Scholar

  5. Ying-Jin Yuan
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.W. conceived the original idea of this review. Y.W., Y.C., G.R.Z., Y.W., and Y.-J.Y. contributed to organizing the structure of the manuscript. Y.W., Y.C., G.-R.Z., Y.W., and Y.-J.Y. contributed to the literature review and wrote sections of the manuscript.

Corresponding author

Correspondence to Yi Wu.

Ethics declarations

Competing interests

The Authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Weimin Zhang, Wei Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cui, Y., Zhao, GR. et al. Synthetic rewriting technologies in mammalian cells. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68066-9

Download citation

  • Received: 31 July 2025

  • Accepted: 15 December 2025

  • Published: 13 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68066-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research