Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Ferroelectric switching of interfacial dipoles in α-RuCl3/graphene heterostructure
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 January 2026

Ferroelectric switching of interfacial dipoles in α-RuCl3/graphene heterostructure

  • Soyun Kim1,
  • Jo Hyun Yun2,3,
  • Junsik Choe1,
  • Dohun Kim1,
  • Takashi Taniguchi  ORCID: orcid.org/0000-0002-1467-31054,
  • Kenji Watanabe  ORCID: orcid.org/0000-0003-3701-81195,
  • Joseph Falson  ORCID: orcid.org/0000-0003-3183-98646,7,
  • Jun Sung Kim  ORCID: orcid.org/0000-0002-1413-72652,3,
  • Kyung-Hwan Jin  ORCID: orcid.org/0000-0002-5116-99878,
  • Gil Young Cho  ORCID: orcid.org/0000-0003-4957-30133,9 &
  • …
  • Youngwook Kim  ORCID: orcid.org/0000-0001-9544-56911 

Nature Communications , Article number:  (2026) Cite this article

  • 3633 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ferroelectrics and multiferroics
  • Topological insulators

Abstract

We demonstrate electrically switchable, non-volatile dipoles in graphene/thin hBN/α-RuCl3alpha-RuCl3 heterostructures, stabilized purely by interfacial charge transfer across an atomically thin dielectric barrier. This mechanism requires no sliding or twisting to explicitly break inversion symmetry and produces robust ferroelectric-like hysteresis loops that emerge prominently near 30 K. Systematic measurements under strong in-plane and out-of-plane magnetic fields reveal negligible effects on the hysteresis characteristics, confirming that the primary mechanism driving the dipole switching is electrostatic. Our findings establish a distinct and robust route to electrically tunable ferroelectric phenomena in van der Waals heterostructures, opening opportunities to explore the interplay between interfacial charge transfer and temperature-tuned barrier crossing of dipole states at the atomic scale.

Similar content being viewed by others

Incommensurate charge super-modulation and hidden dipole order in layered kitaev material α-RuCl3

Article Open access 03 September 2024

General strategy for activating ferroelectricity in bilayer 2D materials with intercalating inert atoms

Article Open access 14 December 2025

Local and correlated studies of humidity-mediated ferroelectric thin film surface charge dynamics

Article Open access 05 October 2021

Data availability

Source data for all main and supplementary text figures are provided with this paper and are also available via the Figshare repository at https://doi.org/10.6084/m9.figshare.30747287

References

  1. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083 (2005).

    Google Scholar 

  2. Bune, A. V. et al. Two-dimensional ferroelectric films. Nature 391, 874 (1998).

    Google Scholar 

  3. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650 (2004).

    Google Scholar 

  4. Wang, C., You, L., Cobden, D. & Wang, J. Towards two-dimensional van der waals ferroelectrics. Nat. Mater. 22, 542 (2023).

    Google Scholar 

  5. Zhou, Y., Dong, S., Shan, C., Ji, K. & Zhang, J. Two-dimensional ferroelectricity induced by octahedral rotation distortion in perovskite oxides. Phys. Rev. B 105, 075408 (2022).

    Google Scholar 

  6. Wu, M. Two-dimensional van der waals ferroelectrics: scientific and technological opportunities. ACS Nano 15, 9229 (2021).

    Google Scholar 

  7. Wu, M. & Jena, P. The rise of two-dimensional van der waals ferroelectrics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1365 (2018).

    Google Scholar 

  8. Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    Google Scholar 

  9. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der waals materials. Nat. Commun. 8, 14956 (2017).

    Google Scholar 

  10. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Google Scholar 

  11. Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2428 (2020).

    Google Scholar 

  12. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274 (2016).

    Google Scholar 

  13. Gou, J. et al. Two-dimensional ferroelectricity in a single-element bismuth monolayer. Nature 617, 67 (2023).

    Google Scholar 

  14. Chang, K. et al. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 20, 6590 (2020).

    Google Scholar 

  15. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Google Scholar 

  16. Ghosh, T. et al. Ultrathin free-standing nanosheets of Bi2O2Se: Room temperature ferroelectricity in self-assembled charged layered heterostructure. Nano Lett. 19, 5703 (2019).

    Google Scholar 

  17. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336 (2018).

    Google Scholar 

  18. Vizner Stern, M. et al. Interfacial ferroelectricity by van der waals sliding. Science 372, 1462 (2021).

    Google Scholar 

  19. Meng, P. et al. Sliding induced multiple polarization states in two-dimensional ferroelectrics. Nat. Commun. 13, 7696 (2022).

    Google Scholar 

  20. Wang, Z., Gui, Z. & Huang, L. Sliding ferroelectricity in bilayer honeycomb structures: a first-principles study. Phys. Rev. B 107, 035426 (2023).

    Google Scholar 

  21. Niu, R. et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nat. Commun. 13, 6241 (2022).

    Google Scholar 

  22. Ji, J., Yu, G., Xu, C. & Xiang, H. General theory for bilayer stacking ferroelectricity. Phys. Rev. Lett. 130, 146801 (2023).

    Google Scholar 

  23. Yang, L., Ding, S., Gao, J. & Wu, M. Atypical sliding and moiré ferroelectricity in pure multilayer graphene. Phys. Rev. Lett. 131, 096801 (2023).

    Google Scholar 

  24. Zhang, S. et al. Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures. Nat. Commun. 14, 6200 (2023).

    Google Scholar 

  25. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458 (2021).

    Google Scholar 

  26. Woods, C. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Google Scholar 

  27. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382 (2017).

    Google Scholar 

  28. Chen, X., Xuan, X., Guo, W. & Zhang, Z. Ferroelectricity in van der waals multilayers via interfacial polarization engineering. npj 2D Mater. Appl. 9, 10 (2025).

    Google Scholar 

  29. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71 (2020).

    Google Scholar 

  30. Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973 (2022).

    Google Scholar 

  31. Rossi, A. et al. Direct visualization of the charge transfer in a graphene/α-RuCl3 heterostructure via angle-resolved photoemission spectroscopy. Nano Lett. 23, 8000 (2023).

    Google Scholar 

  32. Rizzo, D. et al. Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438 (2020).

    Google Scholar 

  33. Rizzo, D. et al. Polaritonic probe of an emergent 2D dipole interface. Nano Lett. 23, 8426 (2023).

    Google Scholar 

  34. Plumb, K. et al. α-RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).

    Google Scholar 

  35. Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733 (2016).

    Google Scholar 

  36. Banerjee, A. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055 (2017).

    Google Scholar 

  37. Yokoi, T. et al. Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl3. Science 373, 568 (2021).

    Google Scholar 

  38. Sears, J. et al. Magnetic order in α-RuCl3: a honeycomb-lattice quantum magnet with strong spin-orbit coupling. Phys. Rev. B 91, 144420 (2015).

    Google Scholar 

  39. Mashhadi, S. et al. Spin-split band hybridization in graphene proximitized with α-RuCl3 nanosheets. Nano Lett. 19, 4659 (2019).

    Google Scholar 

  40. Zhou, B. et al. Evidence for charge transfer and proximate magnetism in graphene-α-RuCl3 heterostructures. Phys. Rev. B 100, 165426 (2019).

    Google Scholar 

  41. Balgley, J. et al. Ultrasharp lateral p-n junctions in modulation-doped graphene. Nano. Lett. 22, 4124 (2022).

    Google Scholar 

  42. Rizzo, D. J. et al. Nanometer-scale lateral p-n junctions in graphene/α-RuCl3 heterostructures. Nano. Lett. 22, 1946 (2022).

    Google Scholar 

  43. Kim, S. et al. Spin and valley-polarized multiple fermi surfaces of α-RuCl3/bilayer graphene heterostructure. Appl. Phys. Lett. 123, 173101 (2023).

    Google Scholar 

  44. Wang, Y. et al. Modulation doping via a two-dimensional atomic crystalline acceptor. Nano Lett. 20, 8446 (2020).

    Google Scholar 

  45. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367 (2022).

    Google Scholar 

  46. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390 (2022).

    Google Scholar 

  47. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160 (2018).

    Google Scholar 

  48. Zheng, Y. et al. Graphene field-effect transistors with ferroelectric gating. Phys. Rev. Lett. 105, 166602 (2010).

    Google Scholar 

  49. Lee, T. Y. et al. Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2. ACS Appl. Mater. Interfaces 11, 3142 (2019).

    Google Scholar 

  50. Illarionov, Y. Y. et al. The role of charge trapping in MoS2/SiO2 and MoS2/hBN field-effect transistors. 2D Mater. 3, 035004 (2016).

    Google Scholar 

  51. Macucci, M. et al. On current transients in MoS2 field effect transistors. Sci. Rep. 7, 11575 (2017).

    Google Scholar 

  52. Ziatdinov, M. et al. Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3. Nat. Commun. 7, 13774 (2016).

    Google Scholar 

  53. Zheng, X. et al. Incommensurate charge super-modulation and hidden dipole order in layered Kitaev material α-RuCl3. Nat. Commun. 15, 7658 (2024).

    Google Scholar 

  54. Liu, Z. et al. Dynamic interfacial quantum dipoles in charge transfer heterostructures https://arxiv.org/abs/2508.01027 (2025).

  55. Kim, D. et al. Full-dry flipping transfer method for van der waals heterostructure. Curr. Appl. Phys. 59, 165 (2024).

    Google Scholar 

  56. Kim, Y. et al. Even denominator fractional quantum hall states in higher landau levels of graphene. Nat. Phys. 15, 154 (2019).

    Google Scholar 

  57. Kim, D. et al. Robust interlayer-coherent quantum Hall states in twisted bilayer graphene. Nano Lett. 23, 163 (2023).

    Google Scholar 

  58. Kim, S. et al. Orbitally controlled quantum Hall states in decoupled two-bilayer graphene sheets. Adv. Sci. 10, 2300574 (2023).

    Google Scholar 

  59. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  60. Perdew, J., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  61. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C. & Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    Google Scholar 

  62. Bučko, T., Lebègue, S., Hafner, J. & Ángyán, J. Improved density dependent correction for the description of london dispersion forces. J. Chem. Theory Comput. 9, 4293 (2013).

    Google Scholar 

Download references

Acknowledgements

We thank Erik Henriksen for helpful discussions.The work from DGIST was supported by the National Research Foundation of Korea (NRF) (Grant No. RS-2025-00557717, RS-2023-00274875, RS-2023-00269616) and the Nano and Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (No. RS-2024-00444725). We also acknowledge the partner group program of the Max Planck Society. Part of this work was supported by Global Partnership Program of Leading Universities in Quantum Science and Technology (RS-2025-02317602). G.Y.C. is financially supported by Samsung Science and Technology Foundation under Project Number SSTF-BA2401-03, the NRF of Korea (Grants No. RS-2023-00208291, RS-2024-00410027, 2023M3K5A1094810, RS-2023-NR119931, RS-2024-00444725, RS-2023-00256050, IRS-2025-25453111, RS-2025-08542968) funded by the Korean Government (MSIT), the Air Force Office of Scientific Research under Award No. FA23862514026, and Institute of Basic Science under project code IBS-R014-D1. This work was performed in part at Aspen Center for Physics, which is supported by National Science Foundation grant PHY-2210452. K.-H.J. was supported by Global-Learning and Academic research institution for Master’s PhD students, and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2024-00443714). The works at POSTECH were supported by National Research Foundation of Korea (No. RS-2024-00410027 and No. 2022M3H4A1A04074153). K.W. and T.T. acknowledge support from the JSPS KAKENHI (Grant Numbers 21H05233 and 23H02052), the CREST (JPMJCR24A5), JST and World Premier International Research Center Initiative (WPI), MEXT, Japan.

Author information

Authors and Affiliations

  1. Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea

    Soyun Kim, Junsik Choe, Dohun Kim & Youngwook Kim

  2. Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea

    Jo Hyun Yun & Jun Sung Kim

  3. Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, Republic of Korea

    Jo Hyun Yun, Jun Sung Kim & Gil Young Cho

  4. Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan

    Takashi Taniguchi

  5. Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan

    Kenji Watanabe

  6. Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA, USA

    Joseph Falson

  7. Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA

    Joseph Falson

  8. Department of Physics and Research Institute of Materials and Energy Sciences, Jeonbuk National University, Jeonju, Republic of Korea

    Kyung-Hwan Jin

  9. Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

    Gil Young Cho

Authors
  1. Soyun Kim
    View author publications

    Search author on:PubMed Google Scholar

  2. Jo Hyun Yun
    View author publications

    Search author on:PubMed Google Scholar

  3. Junsik Choe
    View author publications

    Search author on:PubMed Google Scholar

  4. Dohun Kim
    View author publications

    Search author on:PubMed Google Scholar

  5. Takashi Taniguchi
    View author publications

    Search author on:PubMed Google Scholar

  6. Kenji Watanabe
    View author publications

    Search author on:PubMed Google Scholar

  7. Joseph Falson
    View author publications

    Search author on:PubMed Google Scholar

  8. Jun Sung Kim
    View author publications

    Search author on:PubMed Google Scholar

  9. Kyung-Hwan Jin
    View author publications

    Search author on:PubMed Google Scholar

  10. Gil Young Cho
    View author publications

    Search author on:PubMed Google Scholar

  11. Youngwook Kim
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.K., Y.K., and G.Y.C. conceived the project. S.K., J.C., and D.K. carried out the device fabrication and performed the low-temperature measurement with Y.K. and J.F. The theory was performed by K.-H.J. and G.Y.C., J.H.Y., and J.S.K. conducted Raman Spectroscopy. T.T. and K.W. synthesized the h-BN crystals. All authors contributed to the manuscript writing.

Corresponding authors

Correspondence to Gil Young Cho or Youngwook Kim.

Ethics declarations

Competing interests

The authors declare no competing interest

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementarty Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Yun, J.H., Choe, J. et al. Ferroelectric switching of interfacial dipoles in α-RuCl3/graphene heterostructure. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68072-x

Download citation

  • Received: 30 November 2025

  • Accepted: 17 December 2025

  • Published: 06 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68072-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing