Abstract
Wurtzite ferroelectrics, particularly aluminum scandium nitride (AlScN), have emerged as a promising material platform for non-volatile memories, offering high polarization values exceeding 100 μC/cm2. However, their high coercive fields (>3 MV/cm) have limited cycling endurance to ~107 cycles in previous reports. Here, we demonstrate unprecedented control of polarization switching in AlScN, achieving write cycling endurance exceeding 1010 cycles—a thousand-fold improvement over previous wurtzite ferroelectric benchmarks. Through precise voltage modulation in 45 nm-thick Al0.64Sc0.36N capacitors, we show that while complete polarization reversal (2Pr ≈ 200 μC/cm2) sustains ~108 cycles, partial switching extends endurance beyond 1010 cycles while maintaining a substantial polarization (>30 μC/cm2 for 2Pr). This exceptional endurance, combined with breakdown fields approaching 10 MV/cm in optimized 10 μm diameter devices, represents the highest reported values for any wurtzite ferroelectric. Our findings establish a new paradigm for reliability in nitride ferroelectrics, demonstrating that controlled partial polarization and size scaling enables both high endurance and energy-efficient operation.
Similar content being viewed by others
Data availability
The data that support the findings of this study are present in the Article and the Supplementary information or available from the corresponding authors upon request.
References
Theis, T. N. & Wong, H.-S. P. The end of Moore’s Law: a new beginning for information technology. Comput. Sci. Eng. 19, 41–50 (2017).
Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron 1, 442–450 (2018).
Mikolajick, T. et al. Next-generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).
Kim, K. H. et al. Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors. Nat. Nanotechnol. 18, 1044–1050 (2023).
Kim, K. H., Karpov, I., Olsson, R. H. & Jariwala, D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023).
Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 11 (2019).
Clima, S. et al. Strain and ferroelectricity in wurtzite ScxAl1−xN materials. Appl. Phys. Lett. 119, 17 (2021).
Zhang, Y., Zhu, Q., Tian, B. & Duan, C. New-generation ferroelectric AlScN materials. Nano-Micro Lett. 16, 227 (2024).
Zheng, J. X. et al. Ferroelectric behavior of sputter deposited Al0.72Sc0.28N approaching 5 nm thickness. Appl. Phys. Lett. 122, 22 (2023).
Pradhan, D. K. et al. A scalable ferroelectric non-volatile memory operating at 600 °C. Nat. Electron 7, 348–355 (2024).
Chen, S. M. et al. Reactive sputtering of ferroelectric AlScN films with H2 gas flow for endurance improvement. Jpn. J. Appl. Phys. 63, 03SP45 (2024).
Kim, K. H. et al. Tuning polarity in WSe2/AlScN FeFETs via contact engineering. ACS Nano 18, 4180–4188 (2024).
Toprasertpong, K. et al. Low Operating Voltage, Improved Breakdown Tolerance, and High Endurance in Hf0.5Zr0.5O2 Ferroelectric Capacitors Achieved by Thickness Scaling Down to 4 nm for Embedded Ferroelectric Memory. ACS Appl. Mater. Interfaces 14, 51137–51148 (2022).
Wang, D. et al. Sub-microsecond polarization switching in (Al,Sc)N ferroelectric capacitors grown on complementary metal–oxide–semiconductor-compatible aluminum electrodes. Phys. Status Solidi RRL 15, 2000575 (2021).
Wang, D. et al. Ferroelectric switching in Sub-20 nm aluminum scandium nitride thin films. IEEE Electron Device Lett. 41, 1774–1777 (2020).
Tian, J. et al. Depolarization-field-induced retention loss in ferroelectric diodes. Phys. Rev. Appl. 11, 024058 (2019).
Kim, K. D. et al. Evolution of the ferroelectric properties of AlScN film by electrical cycling with an inhomogeneous field distribution. Adv. Electron. Mater. 0, 2201142 (2023).
Grigoriev, A., Azad, M. M. & McCampbell, J. Ultrafast electrical measurements of polarization dynamics in ferroelectric thin-film capacitors. Rev. Sci. Instrum. 82, 12 (2011).
Tang, Z., Esteves, G. & Olsson, R. H. Sub-quarter micrometer periodically poled Al0.68Sc0.32N for ultra-wideband photonics and acoustic devices. J. Appl. Phys. 134, 11 (2023).
Guido, R. et al. Kinetics of N- to M-polar switching in ferroelectric Al1−xScxN capacitors. Adv. Sci. 11, 2308797 (2024).
CW Lee, K., Yazawa, A., Zakutayev, G. L. & Brennecka, P. Gorai, switching it up: new mechanisms revealed in wurtzite-type ferroelectrics. Sci. Adv. 10, eadl0848 (2024).
Guido, R. et al. Ferroelectric Al0.85Sc0.15N and Hf0.5Zr0.5O2 domain switching dynamics. ACS Appl. Mater. Interfaces 16, 42415–42425 (2024).
Kim, K. H. et al. Multistate, ultrathin, back-end-of-line-compatible AlScN ferroelectric diodes. ACS Nano 18, 15925–15934 (2024).
Mulaosmanovic, H., Breyer, E. T., Mikolajick, T. & Slesazeck, S. Reconfigurable frequency multiplication with a ferroelectric transistor. Nat. Electron 3, 391–397 (2020).
Oh, S., Hwang, H. & Yoo, I. K. Ferroelectric materials for neuromorphic computing. APL Mater. 7, 091109 (2019).
Liu, X. et al. Reconfigurable compute-in-memory on field-programmable ferroelectric diodes. Nano Lett. 22, 7690–7698 (2022).
Gund, V. et al. Towards realizing the low-coercive field operation of sputtered ferroelectric ScxAl1-xN. In 2021, 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) 1064–1067 (IEEE, Orlando, FL, USA, 2021).
Wang, D., Wang, P., Wang, B. & Mi, Z. Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Appl. Phys. Lett. 119, 111902 (2021).
Cao, R. et al. Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode. IEEE Electron Device Lett. 40, 1744–1747 (2019).
Lederer, M. et al. On the origin of wake-up and antiferroelectric-like behavior in ferroelectric hafnium oxide. Phys. Status Solidi RRL 15, 2100086 (2021).
Ray, S. An Introduction To High Voltage Engineering, 2nd edn (PHI Learning Ltd., 2013).
Joule, J. P. & Roget, P. M. On the production of heat by voltaic electricity. Proc. R. Soc. Lond. 4, 280–282 (1843).
Christou, A. Electromigration and Electronic Device Degradation (Wiley, 1994).
Max, B., Hoffmann, M., Slesazeck, S. & Mikolajick, T. Direct correlation of ferroelectric properties and memory characteristics in ferroelectric tunnel junctions. IEEE J. Electron Devices Soc. 7, 1175–1181 (2019).
Wang, P. et al. Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 118, 223504 (2021).
Tsai, S. L. et al. Field cycling behavior and breakdown mechanism of ferroelectric Al0.78Sc0.22N films. Jpn. J. Appl. Phys. 61, SJ1005 (2022).
Pešić, M. et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 26, 4601–4612 (2016).
Pešić, M. et al. A computational study of hafnia-based ferroelectric memories: from ab initio via physical modeling to circuit models of ferroelectric device. J. Comput. Electron 16, 1236–1256 (2017).
He, F. et al. Trolier-McKinstry, frequency dependence of wake-up and fatigue characteristics in ferroelectric Al0.93B0.07N thin films. Acta Mater. 266, 119678 (2024).
Soni, R. et al. Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions. Nat. Commun. 5, 5414 (2014).
Zhang, S. et al. Enhanced breakdown strength and polarization behavior in relaxor ferroelectric films via bidirectional design of defect engineering and heterogeneous interface construction, J. Mater. Chem. C 13, 5555–5564 (2025)
Hu, Z. et al. Demonstration of highly scaled AlScN ferroelectric diode memory with a storage density of >100 Mbit/mm2. Nano Lett. 25, 13748–13755 (2025).
Ramaswamy, N. et al. NVDRAM: a 32Gb dual layer 3D stacked non-volatile ferroelectric memory with near-dram performance for demanding AI workloads. In Int. Electron Devices Meeting (IEDM), 1–4 (IEEE, San Francisco, CA, USA, 2023).
Chen, L. et al. Demonstration of 10 nm ferroelectric Al0.7Sc0.3N-based capacitors for enabling selector-free memory array. Materials 17, 627 (2024).
Drury, D., Yazawa, K., Zakutayev, A., Hanrahan, B. & Brennecka, G. High-temperature ferroelectric behavior of Al0.7Sc0.3N. Micromachines 13, 887 (2022).
Kim, K. D. et al. Impact of operation voltage and NH3 annealing on the fatigue characteristics of ferroelectric AlScN thin films grown by sputtering. Nanoscale 15, 16390–16402 (2023).
Ryoo, S. K. et al. Investigation of optimum deposition conditions of radio frequency reactive magnetron sputtering of Al0.7Sc0.3N film with thickness down to 20 nm. Adv. Electron. Mater. 8, 2200726 (2022).
He, Y. et al. Metal-ferroelectric AlScN-semiconductor memory devices on SiC wafers. Appl. Phys. Lett. 123, 122901 (2023).
Guido, R., Mikolajick, T., Schroeder, U. & Lomenzo, P. D. Role of defects in the breakdown phenomenon of Al1–xScxN: from ferroelectric to filamentary resistive switching. Nano Lett. 23, 7213–7220 (2023).
Joo, H. J. et al. Temperature-dependent ferroelectric behaviors of alscn-based ferroelectric capacitors with a thin HfO2 interlayer for improved endurance and leakage current. Electronics 13, 4515 (2024).
Casamento, J. et al. Ferroelectric Al1−xBxN–GaN heterostructures. Appl. Phys. Lett. 124, 142101 (2024).
Uehara, M. et al. Excellent piezoelectric and ferroelectric properties of ScxGa1−xN alloy with high Sc concentration. APL Mater. 12, 121102 (2024).
Popovici, M. I. et al. High performance La-doped HZO based ferroelectric capacitors by interfacial engineering. In Int. Electron Devices Meeting (IEDM), 6.4.1–6.4.4 (IEEE, San Francisco, CA, USA, 2022).
Liu, X. et al. Endurance properties of silicon-doped hafnium oxide ferroelectric and antiferroelectric-like thin films: a comparative study and prediction. Acta Mater. 154, 190–198 (2018).
Fu, Z. et al. Hafnia-based high-disturbance-immune and selector-free cross-point FeRAM. IEEE Trans. Electron Devices 71, 3358–3364 (2024).
Li, J. et al. High endurance (>1012) via optimized polarization switching ratio for Hf0.5Zr0.5O2-based FeRAM. Appl. Phys. Lett. 122, 082901 (2023).
Lin, Y. D. et al. Highly reliable, scalable, and High-Yield HfZrOx FRAM by barrier layer engineering and post-metal annealing. In Int. Electron Devices Meeting (IEDM), 32.1.1–32.1.4 (IEEE, San Francisco, CA, USA, 2022).
Chernikova, A. G. et al. Improved Ferroelectric Switching Endurance of La-Doped Hf0.5Zr0.5O2 Thin Films. ACS Appl. Mater. Interfaces 10, 2701–2708 (2018).
Joh, H., Jung, T. & Jeon, S. Stress engineering as a strategy to achieve high ferroelectricity in thick Hafnia using interlayer. IEEE Trans. Electron Devices 68, 2538–2542 (2021).
Moazzami, R., Hu, C. & Shepherd, W.H. Endurance properties of ferroelectric PZT thin films. In Int. Technical Digest on Electron Devices, 417–420 (IEEE, San Francisco, CA, USA, 1990).
Yoo, D. C. et al. Highly reliable 50nm-thick PZT capacitor and low voltage FRAM device using Ir/SrRuO3/MOCVD PZT capacitor technology. Digest of Technical Papers. 2005 Symposium on VLSI Technology, 100–101 (Kyoto, Japan, 2005).
Kim, K. & Lee, S. Integration of lead zirconium titanate thin films for high-density ferroelectric random access memory. J. Appl. Phys. 100, 051604 (2006).
Karan, N. K. et al. Preferential grain growth and improved fatigue endurance in Sr substituted PZT thin films on Pt(111)/TiOx/SiO2/Si substrates. J. Alloy Compd. 482, 253–255 (2009)
Zhu, H., Yamamoto, S., Matsui, J., Miyashita, T. & Mitsuishi, M. Ferroelectricity of poly(vinylidene fluoride) homopolymer Langmuir–Blodgett nanofilms. J. Mater. Chem. C. 2, 6727 (2014).
Yoon, J. W., Yoon, S. M. & Ishiwara, H. Improvement in Ferroelectric Fatigue Endurance of Poly(methyl metacrylate)-Blended Poly(vinylidene fluoride–trifluoroethylene). Jpn. J. Appl. Phys. 49, 030201 (2010).
Zhao, D. et al. Polarization fatigue of organic ferroelectric capacitors. Sci. Rep. 4, 5075 (2014).
Jiang, Y. et al. Enabling ultra-low-voltage switching in BaTiO3. Nat. Mater. 21, 779–785 (2022).
Zhai, J. & Chen, H. Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films grown on the highly oriented LaNiO3 buffered Pt/Ti/SiO2/Si substrates. Appl. Phys. Lett. 82, 442–444 (2003).
Haque, A. et al. Heterogeneous integration of high endurance ferroelectric and piezoelectric epitaxial BaTiO3 devices on Si. Adv. Funct. Mater. 35, 2413515 (2024).
Scigaj, M. et al. Monolithic integration of room-temperature multifunctional BaTiO3-CoFe2O4 epitaxial heterostructures on Si(001). Sci. Rep. 6, 31870 (2016).
Park, M. et al. An artificial neuromuscular junction for enhanced reflexes and oculomotor dynamics based on a ferroelectric CuInP2S6/GaN HEMT. Sci. Adv. 9, eadh9889 (2023).
Zhou, Z. et al. Unconventional polarization fatigue in van der Waals layered ferroelectric ionic conductor CuInP2S6. Nat. Commun. 14, 8254 (2023).
Celinska, J., Joshi, V., Narayan, S., McMillan, L. & Paz de Araujo, C. Effects of scaling the film thickness on the ferroelectric properties of SrBi2Ta2O9 ultra thin films. Appl. Phys. Lett. 82, 3937–3939 (2003).
Sakai, S. & Ilangovan, R. Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004).
Acknowledgements
The authors acknowledge support from the Intel SRS program. D.J. also acknowledges partial support from the Office of Naval Research (ONR) Nanoscale Computing and Devices program (N00014-24-1-2131) and the Air Force Office of Scientific Research (AFOSR) GHz-THz program grant number FA9550-23-1-0391. D.J. also acknowledges partial support from NSF Future of Semiconductors (FuSe) program ECCS 2328743. A portion of the sample fabrication, assembly, and characterization were carried out at the Singh Center for Nanotechnology at the University of Pennsylvania, which is supported by the National Science Foundation (NSF) National Nanotechnology Coordinated Infrastructure Program grant NNCI-1542153. The authors acknowledge the use of an X-ray diffraction facility supported by the Laboratory for Research on the Structure of Matter and the NSF through the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) DMR-2309043.
Author information
Authors and Affiliations
Contributions
D.J. and R.H.O. conceived the idea and designed the overall experiments. H.C. developed the code for the endurance cycle test. H.C., Y.W., Y.H., and Z.H. conducted the current-voltage measurements. R.H.O. supervised the AlScN growth process. H.C., C.L., and Y.Z. deposited the AlScN. H.C. designed and carried out the device fabrication processes. X.T. and J.T. conducted the XRD measurement and analysis. H.C. and V.D.B. conducted the PFM measurement and analysis. D.J., R.H.O., and H.C. analyzed the data, prepared the figures, and wrote the manuscript. All authors contributed to the discussion, analysis of the results, and manuscript writing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Megha Acharya and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Cho, H., Wang, Y., Leblanc, C. et al. Write cycling endurance exceeding 1010 in sub-50 nm ferroelectric AlScN. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68221-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-025-68221-2


