Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Write cycling endurance exceeding 1010 in sub-50 nm ferroelectric AlScN
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 January 2026

Write cycling endurance exceeding 1010 in sub-50 nm ferroelectric AlScN

  • Hyunmin Cho1,
  • Yubo Wang1,
  • Chloe Leblanc1,
  • Yinuo Zhang1,
  • Yunfei He  ORCID: orcid.org/0009-0005-0544-692X1,
  • Zirun Han1,
  • Xiaolei Tong1,
  • Vidhu D. Bulumulla1,
  • Jonathan Tan1,
  • Roy H. Olsson III  ORCID: orcid.org/0000-0002-8007-50821 &
  • …
  • Deep Jariwala  ORCID: orcid.org/0000-0002-3570-87681 

Nature Communications , Article number:  (2026) Cite this article

  • 3531 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electrical and electronic engineering
  • Electronic devices
  • Information storage

Abstract

Wurtzite ferroelectrics, particularly aluminum scandium nitride (AlScN), have emerged as a promising material platform for non-volatile memories, offering high polarization values exceeding 100 μC/cm2. However, their high coercive fields (>3 MV/cm) have limited cycling endurance to ~107 cycles in previous reports. Here, we demonstrate unprecedented control of polarization switching in AlScN, achieving write cycling endurance exceeding 1010 cycles—a thousand-fold improvement over previous wurtzite ferroelectric benchmarks. Through precise voltage modulation in 45 nm-thick Al0.64Sc0.36N capacitors, we show that while complete polarization reversal (2Pr ≈ 200 μC/cm2) sustains ~108 cycles, partial switching extends endurance beyond 1010 cycles while maintaining a substantial polarization (>30 μC/cm2 for 2Pr). This exceptional endurance, combined with breakdown fields approaching 10 MV/cm in optimized 10 μm diameter devices, represents the highest reported values for any wurtzite ferroelectric. Our findings establish a new paradigm for reliability in nitride ferroelectrics, demonstrating that controlled partial polarization and size scaling enables both high endurance and energy-efficient operation.

Similar content being viewed by others

Proximity ferroelectricity in wurtzite heterostructures

Article 08 January 2025

Decoupling polarization and coercive field in AlScN/AlN/AlScN stack for enhanced performance in ferroelectric thin-film transistors

Article Open access 11 August 2025

Sub-nanosecond polarization switching with anomalous kinetics in vdW ferroelectric WTe2

Article Open access 05 August 2025

Data availability

The data that support the findings of this study are present in the Article and the Supplementary information or available from the corresponding authors upon request.

References

  1. Theis, T. N. & Wong, H.-S. P. The end of Moore’s Law: a new beginning for information technology. Comput. Sci. Eng. 19, 41–50 (2017).

    Google Scholar 

  2. Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron 1, 442–450 (2018).

    Google Scholar 

  3. Mikolajick, T. et al. Next-generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).

  4. Kim, K. H. et al. Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors. Nat. Nanotechnol. 18, 1044–1050 (2023).

    Google Scholar 

  5. Kim, K. H., Karpov, I., Olsson, R. H. & Jariwala, D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023).

    Google Scholar 

  6. Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 11 (2019).

    Google Scholar 

  7. Clima, S. et al. Strain and ferroelectricity in wurtzite ScxAl1−xN materials. Appl. Phys. Lett. 119, 17 (2021).

    Google Scholar 

  8. Zhang, Y., Zhu, Q., Tian, B. & Duan, C. New-generation ferroelectric AlScN materials. Nano-Micro Lett. 16, 227 (2024).

    Google Scholar 

  9. Zheng, J. X. et al. Ferroelectric behavior of sputter deposited Al0.72Sc0.28N approaching 5 nm thickness. Appl. Phys. Lett. 122, 22 (2023).

    Google Scholar 

  10. Pradhan, D. K. et al. A scalable ferroelectric non-volatile memory operating at 600 °C. Nat. Electron 7, 348–355 (2024).

    Google Scholar 

  11. Chen, S. M. et al. Reactive sputtering of ferroelectric AlScN films with H2 gas flow for endurance improvement. Jpn. J. Appl. Phys. 63, 03SP45 (2024).

    Google Scholar 

  12. Kim, K. H. et al. Tuning polarity in WSe2/AlScN FeFETs via contact engineering. ACS Nano 18, 4180–4188 (2024).

    Google Scholar 

  13. Toprasertpong, K. et al. Low Operating Voltage, Improved Breakdown Tolerance, and High Endurance in Hf0.5Zr0.5O2 Ferroelectric Capacitors Achieved by Thickness Scaling Down to 4 nm for Embedded Ferroelectric Memory. ACS Appl. Mater. Interfaces 14, 51137–51148 (2022).

    Google Scholar 

  14. Wang, D. et al. Sub-microsecond polarization switching in (Al,Sc)N ferroelectric capacitors grown on complementary metal–oxide–semiconductor-compatible aluminum electrodes. Phys. Status Solidi RRL 15, 2000575 (2021).

    Google Scholar 

  15. Wang, D. et al. Ferroelectric switching in Sub-20 nm aluminum scandium nitride thin films. IEEE Electron Device Lett. 41, 1774–1777 (2020).

    Google Scholar 

  16. Tian, J. et al. Depolarization-field-induced retention loss in ferroelectric diodes. Phys. Rev. Appl. 11, 024058 (2019).

    Google Scholar 

  17. Kim, K. D. et al. Evolution of the ferroelectric properties of AlScN film by electrical cycling with an inhomogeneous field distribution. Adv. Electron. Mater. 0, 2201142 (2023).

    Google Scholar 

  18. Grigoriev, A., Azad, M. M. & McCampbell, J. Ultrafast electrical measurements of polarization dynamics in ferroelectric thin-film capacitors. Rev. Sci. Instrum. 82, 12 (2011).

    Google Scholar 

  19. Tang, Z., Esteves, G. & Olsson, R. H. Sub-quarter micrometer periodically poled Al0.68Sc0.32N for ultra-wideband photonics and acoustic devices. J. Appl. Phys. 134, 11 (2023).

    Google Scholar 

  20. Guido, R. et al. Kinetics of N- to M-polar switching in ferroelectric Al1−xScxN capacitors. Adv. Sci. 11, 2308797 (2024).

    Google Scholar 

  21. CW Lee, K., Yazawa, A., Zakutayev, G. L. & Brennecka, P. Gorai, switching it up: new mechanisms revealed in wurtzite-type ferroelectrics. Sci. Adv. 10, eadl0848 (2024).

    Google Scholar 

  22. Guido, R. et al. Ferroelectric Al0.85Sc0.15N and Hf0.5Zr0.5O2 domain switching dynamics. ACS Appl. Mater. Interfaces 16, 42415–42425 (2024).

    Google Scholar 

  23. Kim, K. H. et al. Multistate, ultrathin, back-end-of-line-compatible AlScN ferroelectric diodes. ACS Nano 18, 15925–15934 (2024).

    Google Scholar 

  24. Mulaosmanovic, H., Breyer, E. T., Mikolajick, T. & Slesazeck, S. Reconfigurable frequency multiplication with a ferroelectric transistor. Nat. Electron 3, 391–397 (2020).

    Google Scholar 

  25. Oh, S., Hwang, H. & Yoo, I. K. Ferroelectric materials for neuromorphic computing. APL Mater. 7, 091109 (2019).

    Google Scholar 

  26. Liu, X. et al. Reconfigurable compute-in-memory on field-programmable ferroelectric diodes. Nano Lett. 22, 7690–7698 (2022).

    Google Scholar 

  27. Gund, V. et al. Towards realizing the low-coercive field operation of sputtered ferroelectric ScxAl1-xN. In 2021, 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) 1064–1067 (IEEE, Orlando, FL, USA, 2021).

  28. Wang, D., Wang, P., Wang, B. & Mi, Z. Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Appl. Phys. Lett. 119, 111902 (2021).

    Google Scholar 

  29. Cao, R. et al. Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode. IEEE Electron Device Lett. 40, 1744–1747 (2019).

    Google Scholar 

  30. Lederer, M. et al. On the origin of wake-up and antiferroelectric-like behavior in ferroelectric hafnium oxide. Phys. Status Solidi RRL 15, 2100086 (2021).

    Google Scholar 

  31. Ray, S. An Introduction To High Voltage Engineering, 2nd edn (PHI Learning Ltd., 2013).

  32. Joule, J. P. & Roget, P. M. On the production of heat by voltaic electricity. Proc. R. Soc. Lond. 4, 280–282 (1843).

    Google Scholar 

  33. Christou, A. Electromigration and Electronic Device Degradation (Wiley, 1994).

  34. Max, B., Hoffmann, M., Slesazeck, S. & Mikolajick, T. Direct correlation of ferroelectric properties and memory characteristics in ferroelectric tunnel junctions. IEEE J. Electron Devices Soc. 7, 1175–1181 (2019).

    Google Scholar 

  35. Wang, P. et al. Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 118, 223504 (2021).

    Google Scholar 

  36. Tsai, S. L. et al. Field cycling behavior and breakdown mechanism of ferroelectric Al0.78Sc0.22N films. Jpn. J. Appl. Phys. 61, SJ1005 (2022).

    Google Scholar 

  37. Pešić, M. et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 26, 4601–4612 (2016).

    Google Scholar 

  38. Pešić, M. et al. A computational study of hafnia-based ferroelectric memories: from ab initio via physical modeling to circuit models of ferroelectric device. J. Comput. Electron 16, 1236–1256 (2017).

    Google Scholar 

  39. He, F. et al. Trolier-McKinstry, frequency dependence of wake-up and fatigue characteristics in ferroelectric Al0.93B0.07N thin films. Acta Mater. 266, 119678 (2024).

    Google Scholar 

  40. Soni, R. et al. Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions. Nat. Commun. 5, 5414 (2014).

    Google Scholar 

  41. Zhang, S. et al. Enhanced breakdown strength and polarization behavior in relaxor ferroelectric films via bidirectional design of defect engineering and heterogeneous interface construction, J. Mater. Chem. C 13, 5555–5564 (2025)

  42. Hu, Z. et al. Demonstration of highly scaled AlScN ferroelectric diode memory with a storage density of >100 Mbit/mm2. Nano Lett. 25, 13748–13755 (2025).

  43. Ramaswamy, N. et al. NVDRAM: a 32Gb dual layer 3D stacked non-volatile ferroelectric memory with near-dram performance for demanding AI workloads. In Int. Electron Devices Meeting (IEDM), 1–4 (IEEE, San Francisco, CA, USA, 2023).

  44. Chen, L. et al. Demonstration of 10 nm ferroelectric Al0.7Sc0.3N-based capacitors for enabling selector-free memory array. Materials 17, 627 (2024).

    Google Scholar 

  45. Drury, D., Yazawa, K., Zakutayev, A., Hanrahan, B. & Brennecka, G. High-temperature ferroelectric behavior of Al0.7Sc0.3N. Micromachines 13, 887 (2022).

    Google Scholar 

  46. Kim, K. D. et al. Impact of operation voltage and NH3 annealing on the fatigue characteristics of ferroelectric AlScN thin films grown by sputtering. Nanoscale 15, 16390–16402 (2023).

    Google Scholar 

  47. Ryoo, S. K. et al. Investigation of optimum deposition conditions of radio frequency reactive magnetron sputtering of Al0.7Sc0.3N film with thickness down to 20 nm. Adv. Electron. Mater. 8, 2200726 (2022).

    Google Scholar 

  48. He, Y. et al. Metal-ferroelectric AlScN-semiconductor memory devices on SiC wafers. Appl. Phys. Lett. 123, 122901 (2023).

    Google Scholar 

  49. Guido, R., Mikolajick, T., Schroeder, U. & Lomenzo, P. D. Role of defects in the breakdown phenomenon of Al1–xScxN: from ferroelectric to filamentary resistive switching. Nano Lett. 23, 7213–7220 (2023).

    Google Scholar 

  50. Joo, H. J. et al. Temperature-dependent ferroelectric behaviors of alscn-based ferroelectric capacitors with a thin HfO2 interlayer for improved endurance and leakage current. Electronics 13, 4515 (2024).

    Google Scholar 

  51. Casamento, J. et al. Ferroelectric Al1−xBxN–GaN heterostructures. Appl. Phys. Lett. 124, 142101 (2024).

    Google Scholar 

  52. Uehara, M. et al. Excellent piezoelectric and ferroelectric properties of ScxGa1−xN alloy with high Sc concentration. APL Mater. 12, 121102 (2024).

    Google Scholar 

  53. Popovici, M. I. et al. High performance La-doped HZO based ferroelectric capacitors by interfacial engineering. In Int. Electron Devices Meeting (IEDM), 6.4.1–6.4.4 (IEEE, San Francisco, CA, USA, 2022).

  54. Liu, X. et al. Endurance properties of silicon-doped hafnium oxide ferroelectric and antiferroelectric-like thin films: a comparative study and prediction. Acta Mater. 154, 190–198 (2018).

    Google Scholar 

  55. Fu, Z. et al. Hafnia-based high-disturbance-immune and selector-free cross-point FeRAM. IEEE Trans. Electron Devices 71, 3358–3364 (2024).

    Google Scholar 

  56. Li, J. et al. High endurance (>1012) via optimized polarization switching ratio for Hf0.5Zr0.5O2-based FeRAM. Appl. Phys. Lett. 122, 082901 (2023).

    Google Scholar 

  57. Lin, Y. D. et al. Highly reliable, scalable, and High-Yield HfZrOx FRAM by barrier layer engineering and post-metal annealing. In Int. Electron Devices Meeting (IEDM), 32.1.1–32.1.4 (IEEE, San Francisco, CA, USA, 2022).

  58. Chernikova, A. G. et al. Improved Ferroelectric Switching Endurance of La-Doped Hf0.5Zr0.5O2 Thin Films. ACS Appl. Mater. Interfaces 10, 2701–2708 (2018).

    Google Scholar 

  59. Joh, H., Jung, T. & Jeon, S. Stress engineering as a strategy to achieve high ferroelectricity in thick Hafnia using interlayer. IEEE Trans. Electron Devices 68, 2538–2542 (2021).

    Google Scholar 

  60. Moazzami, R., Hu, C. & Shepherd, W.H. Endurance properties of ferroelectric PZT thin films. In Int. Technical Digest on Electron Devices, 417–420 (IEEE, San Francisco, CA, USA, 1990).

  61. Yoo, D. C. et al. Highly reliable 50nm-thick PZT capacitor and low voltage FRAM device using Ir/SrRuO3/MOCVD PZT capacitor technology. Digest of Technical Papers. 2005 Symposium on VLSI Technology, 100–101 (Kyoto, Japan, 2005).

  62. Kim, K. & Lee, S. Integration of lead zirconium titanate thin films for high-density ferroelectric random access memory. J. Appl. Phys. 100, 051604 (2006).

    Google Scholar 

  63. Karan, N. K. et al. Preferential grain growth and improved fatigue endurance in Sr substituted PZT thin films on Pt(111)/TiOx/SiO2/Si substrates. J. Alloy Compd. 482, 253–255 (2009)

  64. Zhu, H., Yamamoto, S., Matsui, J., Miyashita, T. & Mitsuishi, M. Ferroelectricity of poly(vinylidene fluoride) homopolymer Langmuir–Blodgett nanofilms. J. Mater. Chem. C. 2, 6727 (2014).

    Google Scholar 

  65. Yoon, J. W., Yoon, S. M. & Ishiwara, H. Improvement in Ferroelectric Fatigue Endurance of Poly(methyl metacrylate)-Blended Poly(vinylidene fluoride–trifluoroethylene). Jpn. J. Appl. Phys. 49, 030201 (2010).

    Google Scholar 

  66. Zhao, D. et al. Polarization fatigue of organic ferroelectric capacitors. Sci. Rep. 4, 5075 (2014).

    Google Scholar 

  67. Jiang, Y. et al. Enabling ultra-low-voltage switching in BaTiO3. Nat. Mater. 21, 779–785 (2022).

    Google Scholar 

  68. Zhai, J. & Chen, H. Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films grown on the highly oriented LaNiO3 buffered Pt/Ti/SiO2/Si substrates. Appl. Phys. Lett. 82, 442–444 (2003).

    Google Scholar 

  69. Haque, A. et al. Heterogeneous integration of high endurance ferroelectric and piezoelectric epitaxial BaTiO3 devices on Si. Adv. Funct. Mater. 35, 2413515 (2024).

    Google Scholar 

  70. Scigaj, M. et al. Monolithic integration of room-temperature multifunctional BaTiO3-CoFe2O4 epitaxial heterostructures on Si(001). Sci. Rep. 6, 31870 (2016).

    Google Scholar 

  71. Park, M. et al. An artificial neuromuscular junction for enhanced reflexes and oculomotor dynamics based on a ferroelectric CuInP2S6/GaN HEMT. Sci. Adv. 9, eadh9889 (2023).

    Google Scholar 

  72. Zhou, Z. et al. Unconventional polarization fatigue in van der Waals layered ferroelectric ionic conductor CuInP2S6. Nat. Commun. 14, 8254 (2023).

    Google Scholar 

  73. Celinska, J., Joshi, V., Narayan, S., McMillan, L. & Paz de Araujo, C. Effects of scaling the film thickness on the ferroelectric properties of SrBi2Ta2O9 ultra thin films. Appl. Phys. Lett. 82, 3937–3939 (2003).

    Google Scholar 

  74. Sakai, S. & Ilangovan, R. Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Intel SRS program. D.J. also acknowledges partial support from the Office of Naval Research (ONR) Nanoscale Computing and Devices program (N00014-24-1-2131) and the Air Force Office of Scientific Research (AFOSR) GHz-THz program grant number FA9550-23-1-0391. D.J. also acknowledges partial support from NSF Future of Semiconductors (FuSe) program ECCS 2328743. A portion of the sample fabrication, assembly, and characterization were carried out at the Singh Center for Nanotechnology at the University of Pennsylvania, which is supported by the National Science Foundation (NSF) National Nanotechnology Coordinated Infrastructure Program grant NNCI-1542153. The authors acknowledge the use of an X-ray diffraction facility supported by the Laboratory for Research on the Structure of Matter and the NSF through the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) DMR-2309043.

Author information

Authors and Affiliations

  1. Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

    Hyunmin Cho, Yubo Wang, Chloe Leblanc, Yinuo Zhang, Yunfei He, Zirun Han, Xiaolei Tong, Vidhu D. Bulumulla, Jonathan Tan, Roy H. Olsson III & Deep Jariwala

Authors
  1. Hyunmin Cho
    View author publications

    Search author on:PubMed Google Scholar

  2. Yubo Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Chloe Leblanc
    View author publications

    Search author on:PubMed Google Scholar

  4. Yinuo Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Yunfei He
    View author publications

    Search author on:PubMed Google Scholar

  6. Zirun Han
    View author publications

    Search author on:PubMed Google Scholar

  7. Xiaolei Tong
    View author publications

    Search author on:PubMed Google Scholar

  8. Vidhu D. Bulumulla
    View author publications

    Search author on:PubMed Google Scholar

  9. Jonathan Tan
    View author publications

    Search author on:PubMed Google Scholar

  10. Roy H. Olsson III
    View author publications

    Search author on:PubMed Google Scholar

  11. Deep Jariwala
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.J. and R.H.O. conceived the idea and designed the overall experiments. H.C. developed the code for the endurance cycle test. H.C., Y.W., Y.H., and Z.H. conducted the current-voltage measurements. R.H.O. supervised the AlScN growth process. H.C., C.L., and Y.Z. deposited the AlScN. H.C. designed and carried out the device fabrication processes. X.T. and J.T. conducted the XRD measurement and analysis. H.C. and V.D.B. conducted the PFM measurement and analysis. D.J., R.H.O., and H.C. analyzed the data, prepared the figures, and wrote the manuscript. All authors contributed to the discussion, analysis of the results, and manuscript writing.

Corresponding authors

Correspondence to Roy H. Olsson III or Deep Jariwala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Megha Acharya and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Wang, Y., Leblanc, C. et al. Write cycling endurance exceeding 1010 in sub-50 nm ferroelectric AlScN. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68221-2

Download citation

  • Received: 21 May 2025

  • Accepted: 20 December 2025

  • Published: 09 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68221-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing