Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
All-fibre-coupled terahertz single-pixel imaging for biomedical applications
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

All-fibre-coupled terahertz single-pixel imaging for biomedical applications

  • Sen Mou  ORCID: orcid.org/0000-0002-6872-93891,
  • Rayko I. Stantchev1,2,
  • Sonal Saxena  ORCID: orcid.org/0000-0003-1073-58473,
  • Huiliang Ou1,
  • Shreeya Rane1,
  • Sophie L. Pain  ORCID: orcid.org/0000-0003-1333-20234,5,
  • John D. Murphy  ORCID: orcid.org/0000-0003-0993-59724,5,
  • Euan Hendry3,
  • James Lloyd-Hughes  ORCID: orcid.org/0000-0002-9680-01381 &
  • …
  • Emma Pickwell-MacPherson  ORCID: orcid.org/0000-0001-6062-59591 

Nature Communications , Article number:  (2026) Cite this article

  • 1842 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Imaging and sensing
  • Imaging techniques
  • Photonic devices

Abstract

Real-time, non-invasive imaging techniques are essential for advancing biomedical diagnostics and material analysis, yet existing terahertz (THz) systems often suffer from limited speed, bulky designs, and poor adaptability to in situ environments. Addressing these challenges, we present a fully fibre-coupled THz attenuated total internal reflection single-pixel imaging system, offering a compact, flexible, and robust platform for non-destructive spectroscopy and in vivo imaging. This all-fibre architecture enables seamless integration for in situ biomedical applications, including measurements directly on patients. Central to our design is a THz spatial light modulator based on an unpassivated silicon wafer, facilitating high-speed modulation and enabling video-rate imaging with a spatial resolution down to 360 μm. Despite being in the reflection geometry and using fibre-coupled light, our system achieves an imaging throughput exceeding 30,000 pixels per second for 64-by-64 images - over five-fold higher than the state of the art - representing a substantial improvement in real-time THz imaging capabilities.

Similar content being viewed by others

High-throughput terahertz imaging: progress and challenges

Article Open access 15 September 2023

Phasor-based hyperspectral snapshot microscopy allows fast imaging of live, three-dimensional tissues for biomedical applications

Article Open access 11 June 2021

All-optical hybrid metasurfaces for ultrafast computational spectrometer and single-pixel imaging

Article Open access 14 December 2025

Data availability

Data supporting the findings of this study are openly available in Figshare at https://doi.org/10.6084/m9.figshare.30719816.

References

  1. Yu, C., Fan, S., Sun, Y. & Pickwell-MacPherson, E. The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2, 33 (2012).

    Google Scholar 

  2. Cong, M. et al. Biomedical application of terahertz imaging technology: a narrative review. Quant. Imaging Med. Surg. 13, 8768 (2023).

    Google Scholar 

  3. D’Arco, A., Di Fabrizio, M., Dolci, V., Petrarca, M. & Lupi, S. THz pulsed imaging in biomedical applications. Condens. Matter 5, 25 (2020).

    Google Scholar 

  4. Ding, X. et al. Quantitative evaluation of transdermal drug delivery patches on human skin with in vivo THz-TDS. Biomed. Opt. Express 14, 1146 (2023).

    Google Scholar 

  5. Wang, J., Lindley-Hatcher, H., Liu, K. & Pickwell-MacPherson, E. Evaluation of transdermal drug delivery using terahertz pulsed imaging. Biomed. Opt. Express 11, 4484 (2020).

    Google Scholar 

  6. Lindley-Hatcher, H. et al. Monitoring the effect of transdermal drug delivery patches on the skin using terahertz sensing. Pharmaceutics 13, 2052 (2021).

    Google Scholar 

  7. Barker, X. E. R. et al. Monitoring the terahertz response of skin beneath transdermal drug delivery patches using sparse deconvolution. IEEE Trans. Terahertz Sci. Technol. 13, 503 (2023).

    Google Scholar 

  8. Sun, Q., Parrott, E. P., He, Y. & Pickwell-MacPherson, E. In vivo THz imaging of human skin: accounting for occlusion effects. J. Biophotonics 11, e201700111 (2018).

    Google Scholar 

  9. Sun, Q. et al. In vivo estimation of water diffusivity in occluded human skin using terahertz reflection spectroscopy. J. Biophotonics 12, e201800145 (2019).

    Google Scholar 

  10. Lindley-Hatcher, H. et al. Evaluation of in vivo THz sensing for assessing human skin hydration. J. Phys. Photonics 3, 014001 (2020).

    Google Scholar 

  11. Martinez, A. et al. Chestnut quality classification by THz time-domain hyperspectral imaging combined with unsupervised learning analysis. Food Control 168, 110878 (2025).

    Google Scholar 

  12. Mushtaq, R. et al. Using diatom chain length as a bioindicator of heavy-metal contamination in marine environments. J. Hazard. Mater. 484, 136732 (2025).

    Google Scholar 

  13. Mou, S. et al. Ultrafast hole relaxation between dual valence bands in methylammonium lead iodide. J. Mater. Chem. A 12, 15463 (2024).

    Google Scholar 

  14. Mics, Z. et al. Thermodynamic picture of ultrafast charge transport in graphene. Nat. Commun. 6, 7655 (2015).

    Google Scholar 

  15. Sajadi, M., Wolf, M. & Kampfrath, T. Terahertz-field-induced optical birefringence in common window and substrate materials. Opt. Express 23, 28985 (2015).

    Google Scholar 

  16. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26 (2002).

    Google Scholar 

  17. D’Angelo, F., Mics, Z., Bonn, M. & Turchinovich, D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Opt. Express 22, 12475 (2014).

    Google Scholar 

  18. Rubano, A., Wolf, M. & Kampfrath, T. Terahertz conductivity and ultrafast dynamics of photoinduced charge carriers in intrinsic 3c and 6h silicon carbide. Appl. Phys. Lett. 105, 032104 (2014).

    Google Scholar 

  19. Qin, J., Xie, L. & Ying, Y. Rapid analysis of tetracycline hydrochloride solution by attenuated total reflection terahertz time-domain spectroscopy. Food Chem. 224, 262 (2017).

    Google Scholar 

  20. Tang, M. et al. Detection of single-base mutation of DNA oligonucleotides with different lengths by terahertz attenuated total reflection microfluidic cell. Biomed. Opt. Express 11, 5362 (2020).

    Google Scholar 

  21. Wang, Y. et al. Terahertz spectroscopic diagnosis of early blast-induced traumatic brain injury in rats. Biomed. Opt. Express 11, 4085 (2020).

    Google Scholar 

  22. Wu, S., Yuan, Y., Li, G., Zhu, Y. & Chen, L. Increase the sensitivity of terahertz liquid detection using a triple attenuated total reflection probe. Opt. Express 33, 5021 (2025).

    Google Scholar 

  23. Mou, S. et al. Achromatic terahertz quarter-wave Fresnel rhomb retarder. Appl. Phys. Lett. 122, 241102 (2023).

    Google Scholar 

  24. Mosley, C. D. W., Deveikis, J. & Lloyd-Hughes, J. Precise and accurate control of the ellipticity of THz radiation using a photoconductive pixel array. Appl. Phys. Lett. 119, 121105 (2021).

    Google Scholar 

  25. Chen, H. et al. Achromatic arbitrary polarization control in the terahertz band by tunable phase compensation. Optica 12, 105 (2025).

    Google Scholar 

  26. Allerbeck, J. et al. Efficient and continuous carrier-envelope phase control for terahertz lightwave-driven scanning probe microscopy. ACS Photonics 10, 3888 (2023).

    Google Scholar 

  27. Liu, X. et al. Graphene-based terahertz light modulator in total internal reflection geometry. Adv. Optical Mater. 5, 1600697 (2017).

    Google Scholar 

  28. Stantchev, R. I., Yu, X., Blu, T. & Pickwell-MacPherson, E. Real-time terahertz imaging with a single-pixel detector. Nat. Commun. 11, 2535 (2020).

    Google Scholar 

  29. Osman, O. B. et al. In vivo assessment and monitoring of burn wounds using a handheld terahertz hyperspectral scanner. Adv. Photonics Res. 3, 2100095 (2022).

    Google Scholar 

  30. Qi, X. et al. Terahertz in vivo imaging of human skin: toward detection of abnormal skin pathologies. APL Bioeng. 8, 016117 (2024).

    Google Scholar 

  31. Wang, J. et al. In vivo terahertz imaging to evaluate scar treatment strategies: silicone gel sheeting. Biomed. Opt. Express 10, 3584 (2019).

    Google Scholar 

  32. Stantchev, R. I. et al. Compressed sensing with near-field THz radiation. Optica 4, 989 (2017).

    Google Scholar 

  33. Stantchev, R. I. et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv. 2, e1600190 (2016).

    Google Scholar 

  34. Barr, L. E. et al. Super-resolution imaging for sub-IR frequencies based on total internal reflection. Optica 8, 88 (2021).

    Google Scholar 

  35. Chen, S.-C. et al. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl. 9, 99 (2020).

    Google Scholar 

  36. Li, W. et al. Dual-color terahertz spatial light modulator for single-pixel imaging. Light Sci. Appl. 11, 99 (2022).

    Google Scholar 

  37. Olivieri, L., Totero Gongora, J. S., Pasquazi, A. & Peccianti, M. Time-resolved nonlinear ghost imaging. ACS Photonics 5, 3379 (2018).

    Google Scholar 

  38. Olivieri, L. et al. Hyperspectral terahertz microscopy via nonlinear ghost imaging. Optica 7, 186 (2020).

    Google Scholar 

  39. Gibson, G. M., Johnson, S. D. & Padgett, M. J. Single-pixel imaging 12 years on: a review. Opt. Express 28, 28190 (2020).

    Google Scholar 

  40. She, R., Liu, W., Lu, Y., Zhou, Z. & Li, G. Fourier single-pixel imaging in the terahertz regime. Appl. Phys. Lett. 115, 021101 (2019).

    Google Scholar 

  41. Chan, W. L. et al. A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93, 121105 (2008).

    Google Scholar 

  42. Vallés, A., He, J., Ohno, S., Omatsu, T. & Miyamoto, K. Broadband high-resolution terahertz single-pixel imaging. Opt. Express 28, 28868 (2020).

    Google Scholar 

  43. Shrekenhamer, D., Watts, C. M. & Padilla, W. J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Opt. Express 21, 12507 (2013).

    Google Scholar 

  44. Liang, J. et al. Photoactive polymer-silicon heterostructures for terahertz spatial light modulation and video-rate single-pixel compressive imaging. Adv. Funct. Mater. 35, 2422478 (2025).

  45. Hooper, I. R. et al. High efficiency photomodulators for millimeter wave and THz radiation. Sci. Rep. 9, 18304 (2019).

    Google Scholar 

  46. Romain, X. et al. Electrically tunable Si-based THz photomodulator using dielectric/polymer surface gating. IEEE Trans. Terahertz Sci. Technol. 15, 76 (2025).

    Google Scholar 

  47. She, R., Liu, W., Wei, G., Lu, Y. & Li, G. Terahertz single-pixel imaging improved by using a silicon wafer with SiO2 passivation. Appl. Sci. 10, 2427 (2020).

    Google Scholar 

  48. Hernandez-Serrano, A. I. Adv. Photon. Nexus 3, 016012 (2024).

    Google Scholar 

  49. Dogra, A. et al. Towards autonomous robotic THz-based in vivo skin sensing: the picobot. Sci. Rep. 15, 4568 (2025).

    Google Scholar 

  50. Lu, T., Qiu, Z., Zhang, Z. & Zhong, J. Comprehensive comparison of single-pixel imaging methods. Opt. Lasers Eng. 134, 106301 (2020).

    Google Scholar 

  51. Czajkowski, K. M., Pastuszczak, A. & Kotyński, R. Real-time single-pixel video imaging with Fourier domain regularization. Opt. Express 26, 20009 (2018).

    Google Scholar 

  52. Dean, P. et al. Terahertz imaging using quantum cascade lasers-a review of systems and applications. J. Phys. D: Appl. Phys. 47, 374008 (2014).

    Google Scholar 

  53. Deng, Y., She, R., Liu, W., Lu, Y. & Li, G. High-efficiency terahertz single-pixel imaging based on a physics-enhanced network. Opt. Express 31, 10273 (2023).

    Google Scholar 

  54. Rothbart, N. et al. Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror. IEEE Trans. Terahertz Sci. Technol. 3, 617 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC) (EP/V047914/1). SLP is supported by the Royal Academy of Engineering Research Fellowship scheme (RF-2324-23-197). RIS acknowledges the support of the Yushan Young Fellow award (MOE-112-YSFMS-0009-001-P1).

Author information

Authors and Affiliations

  1. Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom

    Sen Mou, Rayko I. Stantchev, Huiliang Ou, Shreeya Rane, James Lloyd-Hughes & Emma Pickwell-MacPherson

  2. Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan

    Rayko I. Stantchev

  3. Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, United Kingdom

    Sonal Saxena & Euan Hendry

  4. School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom

    Sophie L. Pain & John D. Murphy

  5. School of Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

    Sophie L. Pain & John D. Murphy

Authors
  1. Sen Mou
    View author publications

    Search author on:PubMed Google Scholar

  2. Rayko I. Stantchev
    View author publications

    Search author on:PubMed Google Scholar

  3. Sonal Saxena
    View author publications

    Search author on:PubMed Google Scholar

  4. Huiliang Ou
    View author publications

    Search author on:PubMed Google Scholar

  5. Shreeya Rane
    View author publications

    Search author on:PubMed Google Scholar

  6. Sophie L. Pain
    View author publications

    Search author on:PubMed Google Scholar

  7. John D. Murphy
    View author publications

    Search author on:PubMed Google Scholar

  8. Euan Hendry
    View author publications

    Search author on:PubMed Google Scholar

  9. James Lloyd-Hughes
    View author publications

    Search author on:PubMed Google Scholar

  10. Emma Pickwell-MacPherson
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.M. performed the experiments with help from R.I.S. and S.R. S.M. and R.I.S. analyzed the data with help from S.R. S.M., S.S., and R.I.S. constructed the experimental setup with help from E.H., H.O., and S.R. S.M. wrote the manuscript with input from S.S., E.H., J.L.H., and E.P.M. All authors checked the manuscript. H.O. fabricated the cartwheel sample. S.L.P. and J.D.M. provided the silicon photomodulators. E.P.M., J.L.H., and E.H. supervised the project.

Corresponding author

Correspondence to Emma Pickwell-MacPherson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Stefan Frick and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, S., Stantchev, R.I., Saxena, S. et al. All-fibre-coupled terahertz single-pixel imaging for biomedical applications. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68290-x

Download citation

  • Received: 11 June 2025

  • Accepted: 02 January 2026

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68290-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing