Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Historical deforestation drives strong rainfall decline across the southern Amazon basin
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 January 2026

Historical deforestation drives strong rainfall decline across the southern Amazon basin

  • Jiangpeng Cui  (崔江鹏)  ORCID: orcid.org/0000-0003-4587-541X1,
  • Shilong Piao  (朴世龙)  ORCID: orcid.org/0000-0001-8057-22922,
  • Chris Huntingford  ORCID: orcid.org/0000-0002-5941-77703,
  • Tao Wang  (汪涛)  ORCID: orcid.org/0000-0002-1323-86971 &
  • …
  • Dominick V. Spracklen  ORCID: orcid.org/0000-0002-7551-45974 

Nature Communications , Article number:  (2026) Cite this article

  • 5099 Accesses

  • 34 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric science
  • Hydrology

Abstract

The Amazon forest has recently experienced substantial human-induced loss of forest cover. However, the extent to which such historical deforestation has altered regional observed precipitation through inter-regional atmospheric moisture transport remains unclear. Here, we combine satellite observations and an atmospheric moisture tracking model to quantify these feedbacks over the past four decades (1980-2019). We identify a contrasting northern increase and southern decrease dipole trend in observed precipitation across the Amazon basin. The pronounced reduction in precipitation for the southern Amazon basin reaches up to 3.9-5.4 mm yr-1 per year, resulting in an 8-11% decline in annual precipitation across the observation period. We discover that this reduction in precipitation is primarily (52-72%) related to widespread deforestation in the southern basin and upwind regions over South America. Deforestation substantially suppresses forest-sourced moisture, increases atmospheric stability and moisture outflow, leading to precipitation reduction. We also find that climate models substantially underestimate the sensitivity of precipitation to deforestation, implying that the Amazon forest is at risk of major loss much sooner than previously projected.

Similar content being viewed by others

Observed shifts in regional climate linked to Amazon deforestation

Article Open access 21 November 2025

Discrepancies in precipitation trends between observational and reanalysis datasets in the Amazon Basin

Article Open access 01 March 2025

How climate change and deforestation interact in the transformation of the Amazon rainforest

Article Open access 02 September 2025

Data availability

GPCP v2.3 precipitation data are available at https://psl.noaa.gov/data/gridded/data.gpcp.html. GPCC (full data, v2022) precipitation data are available at https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html. In-situ discharge data are from Global Runoff Data Centre (GRDC; Koblenz, Germany: https://www.bafg.de/GRDC/EN/Home/homepage_node.html). GLEAM) v3.5a evapotranspiration data are available at https://www.gleam.eu/. OAFlux ocean evaporation is available at https://oaflux.whoi.edu. Flux tower observation can be accessed at https://daac.ornl.gov/LBA/guides/CD32_Fluxes_Brazil.html. ERA5 atmospheric and land-surface wind, humidity and fluxes datasets are available at https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. Forest cover is available at https://glad.umd.edu/dataset/long-term-global-land-change. TPDC solar radiation is freely access at https://doi.org/10.11888/Meteoro.tpdc.270112. Future land use data are available at https://luh.umd.edu/ and https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1153. The dataset on the fate of land evapotranspiration and precipitation sources is available at https://doi.org/10.1594/PANGAEA.908705. Projected precipitation recycling is obtained from https://zenodo.org/records/10650579. Wind speed from CMIP6 can be accessed at https://aims2.llnl.gov/search/cmip6/. Source data are provided with this paper.

Code availability

The codes for WAM-2layers are available via the https://doi.org/10.5281/zenodo.7010594 or at https://github.com/WAM2layers/WAM2layers. The data are processed with Matlab R2021b. The codes for the key methods and Matlab data files related to this work are available at https://doi.org/10.6084/m9.figshare.29649002.v2.

References

  1. Cardoso, D. et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. USA 114, 10695–10700 (2017).

    Google Scholar 

  2. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Google Scholar 

  3. Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

    Google Scholar 

  4. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 105, 1786–1793 (2008).

    Google Scholar 

  5. Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    Google Scholar 

  6. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Google Scholar 

  7. Zalles, V. et al. Rapid expansion of human impact on natural land in South America since 1985. Sci. Adv. 7, eabg1620 (2021).

    Google Scholar 

  8. Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).

    Google Scholar 

  9. Zemp, D. C. et al. On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys. 14, 13337–13359 (2014).

    Google Scholar 

  10. Wright, J. S. et al. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA 114, 8481–8486 (2017).

    Google Scholar 

  11. Araujo, R., Assuncao, J., Hirota, M. & Scheinkman, J. A. Estimating the spatial amplification of damage caused by degradation in the Amazon. Proc. Natl. Acad. Sci. USA 120, e2312451120 (2023).

    Google Scholar 

  12. Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahao, G. M. & Borner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).

    Google Scholar 

  13. Smith, C., Baker, J. C. A. & Spracklen, D. V. Tropical deforestation causes large reductions in observed precipitation. Nature 615, 270–275 (2023).

  14. Qin, Y., Wang, D., Ziegler, A. D., Fu, B. & Zeng, Z. Impact of Amazonian deforestation on precipitation reverses between seasons. Nature 639, 102–108 (2025).

    Google Scholar 

  15. Cui, J. P. et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nat. Geosci. 15, 982–988 (2022).

    Google Scholar 

  16. van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

    Google Scholar 

  17. Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).

    Google Scholar 

  18. Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    Google Scholar 

  19. Wang-Erlandsson, L. et al. Remote land use impacts on river flows through atmospheric teleconnections. Hydrol. Earth Syst. Sc. 22, 4311–4328 (2018).

    Google Scholar 

  20. Hoek van Dijke, A. J. et al. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 15, 363–368 (2022).

    Google Scholar 

  21. van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle-Part 2: Moisture recycling. Earth Syst. Dynam. 5, 471–489 (2014).

    Google Scholar 

  22. Zhang, C., Tang, Q. & Chen, D. Recent changes in the moisture source of precipitation over the Tibetan Plateau. J. Clim. 30, 1807–1819 (2017).

    Google Scholar 

  23. Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour. 43, 193–218 (2018).

    Google Scholar 

  24. Haghtalab, N., Moore, N., Heerspink, B. P. & Hyndman, D. W. Evaluating spatial patterns in precipitation trends across the Amazon basin driven by land cover and global scale forcings. Theor. Appl. Climatol. 140, 411–427 (2020).

    Google Scholar 

  25. Cui, J. et al. Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat. Commun. 11, 5184 (2020).

    Google Scholar 

  26. Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).

    Google Scholar 

  27. Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2014).

    Google Scholar 

  28. Sampaio, G. et al. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 34, L17709 (2007).

  29. Xu, X. et al. Deforestation triggering irreversible transition in Amazon hydrological cycle. Environ. Res. Lett. 17, 034037 (2022).

    Google Scholar 

  30. Lejeune, Q., Davin, E. L., Guillod, B. P. & Seneviratne, S. I. Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim. Dyn. 44, 2769–2786 (2015).

    Google Scholar 

  31. Eiras-Barca, J. et al. Changes in South American hydroclimate under projected Amazonian deforestation. Ann. N. Y. Acad. Sci. 1472, 104–122 (2020).

    Google Scholar 

  32. Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Google Scholar 

  33. Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).

    Google Scholar 

  34. Baudena, M., Tuinenburg, O. A., Ferdinand, P. A. & Staal, A. Effects of land-use change in the Amazon on precipitation are likely underestimated. Glob. Chang. Biol. 27, 5580–5587 (2021).

  35. Luo, X. et al. The biophysical impacts of deforestation on precipitation: results from the CMIP6 model intercomparison. J. Clim. 35, 3293–3311 (2022).

    Google Scholar 

  36. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Google Scholar 

  37. Soares-Filho, B. S. et al. Modelling conservation in the Amazon basin. Nature 440, 520–523 (2006).

    Google Scholar 

  38. Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA 112, 13172–13177 (2015).

    Google Scholar 

  39. Boers, N., Marwan, N., Barbosa, H. M. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).

    Google Scholar 

  40. Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 113, 10759–10768 (2016).

    Google Scholar 

  41. Armstrong McKay, D. I. et al. Exceeding 1.5 degrees C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Google Scholar 

  42. Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl. Acad. Sci. USA 111, 6347–6352 (2014).

    Google Scholar 

  43. Wunderling, N. et al. Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. Proc. Natl. Acad. Sci. USA 119, e2120777119 (2022).

    Google Scholar 

  44. Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).

    Google Scholar 

  45. Li, Y. et al. Future increases in Amazonia water stress from CO2 physiology and deforestation. Nat. Water 1, 769–777 (2023).

    Google Scholar 

  46. Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).

    Google Scholar 

  47. Baker, J. C. A. et al. Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models. Hydrol. Earth Syst. Sc. 25, 2279–2300 (2021).

    Google Scholar 

  48. Soudani, K. & Francois, C. Remote sensing: a green illusion. Nature 506, 165–166 (2014).

    Google Scholar 

  49. Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

    Google Scholar 

  50. Staal, A., Meijer, P., Nyasulu, M. K., Tuinenburg, O. A. & Dekker, S. C. Global terrestrial moisture recycling in shared socioeconomic pathways. Earth Syst. Dynam. 16, 215–238 (2025).

    Google Scholar 

  51. Findell, K. L. et al. Rising temperatures increase importance of oceanic evaporation as a source for continental precipitation. J. Clim. 32, 7713–7726 (2019).

    Google Scholar 

  52. Huffman, G. J., Adler, R. F., Bolvin, D. T. & Gu, G. Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett. 36, L17808 (2009).

    Google Scholar 

  53. Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).

    Google Scholar 

  54. Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Google Scholar 

  55. Wu, J. et al. The Reliability of global remote sensing evapotranspiration products over Amazon. Remote Sens. 12, 2211 (2020).

  56. Swann, A. L. S. & Koven, C. D. A direct estimate of the seasonal cycle of evapotranspiration over the Amazon basin. J. Hydrometeorol. 18, 2173–2185 (2017).

    Google Scholar 

  57. Humphrey, V. & Gudmundsson, L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 11, 1153–1170 (2019).

    Google Scholar 

  58. Ma, N., Zhang, Y. & Szilagyi, J. Water-balance-based evapotranspiration for 56 large river basins: A benchmarking dataset for global terrestrial evapotranspiration modeling. J. Hydrol. 630, 130607 (2024).

  59. Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 74 (2019).

    Google Scholar 

  60. Restrepo-Coupe, N. et al. LBA-ECO CD-32 Flux Tower Network Data Compilation, Brazilian Amazon: 1999-2006, V2 (ORNL DAAC, Oak Ridge, Tennessee, USA, 2021).

  61. Tang, W., Yang, K., Qin, J., Li, X. & Niu, X. A 16-year dataset (2000–2015) of high-resolution (3h, 10km) global surface solar radiation. Earth Syst. Sci. Data 11, 1905–1915 (2019).

    Google Scholar 

  62. Soares-Filho, B. S. et al. LBA-ECO LC-14 Modeled Deforestation Scenarios, Amazon Basin: 2002-2050 (ORNL DAAC, Oak Ridge, Tennessee, USA, 2013).

  63. van der Ent, R. J., Tuinenburg, O. A., Knoche, H. R., Kunstmann, H. & Savenije, H. H. G. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol. Earth Syst. Sc. 17, 4869–4884 (2013).

    Google Scholar 

  64. Yu, L. & Weller, R. A. Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Am. Meteorol. Soc. 88, 527–540 (2007).

    Google Scholar 

  65. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  66. Link, A., van der Ent, R., Berger, M., Eisner, S. & Finkbeiner, M. The fate of land evaporation – a global dataset. Earth Syst. Sci. Data 12, 1897–1912 (2020).

    Google Scholar 

  67. Keys, P. W. et al. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 9, 733–746 (2012).

    Google Scholar 

  68. Kalamandeen, M. et al. Pervasive rise of small-scale deforestation in Amazonia. Sci. Rep. 8, 1600 (2018).

    Google Scholar 

  69. Zeng, Y. et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 3, 477–493 (2022).

  70. Koppa, A. et al. Dryland self-expansion enabled by land–atmosphere feedbacks. Science 385, 967–972 (2024).

    Google Scholar 

Download references

Acknowledgements

This article was supported by the National Natural Science Foundation of China (42522506 and 42471113; J.P.C.) and by the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2024QZKK0301; J.P.C.). The authors would like to thank Ruud van der Ent for his helpful suggestions on the paper.

Author information

Authors and Affiliations

  1. State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

    Jiangpeng Cui  (崔江鹏) & Tao Wang  (汪涛)

  2. Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China

    Shilong Piao  (朴世龙)

  3. U.K. Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK

    Chris Huntingford

  4. School of Earth and Environment, University of Leeds, Leeds, UK

    Dominick V. Spracklen

Authors
  1. Jiangpeng Cui  (崔江鹏)
    View author publications

    Search author on:PubMed Google Scholar

  2. Shilong Piao  (朴世龙)
    View author publications

    Search author on:PubMed Google Scholar

  3. Chris Huntingford
    View author publications

    Search author on:PubMed Google Scholar

  4. Tao Wang  (汪涛)
    View author publications

    Search author on:PubMed Google Scholar

  5. Dominick V. Spracklen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.L.P. and J.P.C. designed the research; J.P.C. performed the analysis. J.P.C. and C.H. drafted the paper. J.P.C., S.L.P., C.H., T.W. and D.V.S. contributed to the interpretation of the results and to the text.

Corresponding authors

Correspondence to Jiangpeng Cui  (崔江鹏) or Shilong Piao  (朴世龙).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Francina Dominguez, and the other, anonymous, reviewer for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Figure 1 Source Data

Figure 2 Source Data

Figure 4 Source Data

Figure 5 Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Piao, S., Huntingford, C. et al. Historical deforestation drives strong rainfall decline across the southern Amazon basin. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68361-z

Download citation

  • Received: 22 May 2025

  • Accepted: 05 January 2026

  • Published: 13 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68361-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing