Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Haldane’s law works through X:Autosome incompatibility in Caenorhabditis briggsae/C. nigoni hybrids
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 January 2026

Haldane’s law works through X:Autosome incompatibility in Caenorhabditis briggsae/C. nigoni hybrids

  • Jonathan P. Harbin1,
  • Yongquan Shen1,
  • Abdul H. Abubakar1 &
  • …
  • Ronald E. Ellis  ORCID: orcid.org/0000-0002-4027-20221 

Nature Communications , Article number:  (2026) Cite this article

  • 1434 Accesses

  • 3 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Evolutionary biology
  • Evolutionary genetics
  • Evolutionary theory

Abstract

More than one hundred years ago, JBS Haldane noted that in a cross between two species, if one of the sexes is absent, rare or sterile, the affected sex is heterogametic. The underlying genetic causes for this phenomenon have been a source of debate ever since. Here, we test how Haldane’s rule operates in Caenorhabditis nematodes by studying (1) crosses involving sex-determination mutants of two hybridizing species, and (2) crosses involving tetraploids. Our results indicate that the critical feature underlying Haldane’s rule is incompatibility between a sex chromosome derived from only one species, and autosome pairs derived from both. In addition, we show that the mechanisms for evaluating the X:Autosome ratio have diverged during recent nematode evolution. We conclude that the way interactions between sex chromosomes and autosomes are structured causes them to play an important role in establishing genetic barriers between newly separating species.

Similar content being viewed by others

Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane's rule

Article Open access 04 February 2021

Y chromosome introgression between deeply divergent primate species

Article Open access 29 November 2024

Possible stochastic sex determination in Bursaphelenchus nematodes

Article Open access 11 May 2022

Data availability

All data and strains not presented directly in the manuscript are freely available upon request.

References

  1. Haldane, J. B. S. Sex ratio and unisexual sterility in hybrid animals. J Genet. 12, 101–109 (1922).

    Google Scholar 

  2. Cutter, A. D. Beyond Haldane’s rule: Sex-biased hybrid dysfunction for all modes of sex determination. Elife 13, e96652 (2024).

    Google Scholar 

  3. Woodruff, G. C., Eke, O., Baird, S. E., Félix, M. A. & Haag, E. S. Insights into species divergence and the evolution of hermaphroditism from fertile interspecies hybrids of Caenorhabditis nematodes. Genetics 186, 997–1012 (2010).

    Google Scholar 

  4. Kozlowska, J. L., Ahmad, A. R., Jahesh, E. & Cutter, A. D. Genetic variation for postzygotic reproductive isolation between Caenorhabditis briggsae and Caenorhabditis sp. 9. Evolution 66, 1180–1195 (2012).

    Google Scholar 

  5. Ragavapuram, V., King, E. E. & Baird, S. E. Suppression of F1 male-specific lethality in caenorhabditis hybrids by cbr-him-8. G3 185–268 (2015).

  6. Turelli, M. & Orr, H. A. The dominance theory of Haldane’s rule. Genetics 140, 389–402 (1995).

    Google Scholar 

  7. Bundus, J. D., Alaei, R. & Cutter, A. D. Gametic selection, developmental trajectories, and extrinsic heterogeneity in Haldane’s rule. Evolution 69, 2005–2017 (2015).

    Google Scholar 

  8. Devi, M. P. et al. Five new Caenorhabditis species from Indonesia provide exceptions to Haldane’s rule and partial fertility of interspecific hybrids. G3 jkaf134 (2025).

  9. Yin, D. et al. Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science 359, 55–61 (2018).

    Google Scholar 

  10. Bi, Y. et al. A Genome-wide hybrid incompatibility landscape between Caenorhabditis briggsae and C. nigoni. PLoS Genet. 11, e1004993 (2015).

    Google Scholar 

  11. Xie, D. et al. Genetic exchange with an outcrossing sister species causes severe genome-wide dysregulation in a selfing Caenorhabditis nematode. Genome Res. 32, 2015–2027 (2022).

    Google Scholar 

  12. Xie, D. et al. A newborn F-box gene blocks gene flow by selectively degrading phosphoglucomutase in species hybrids. Proc. Natl. Acad. Sci. U.S.A. 121, e2418037121 (2024).

    Google Scholar 

  13. Bi, Y. et al. Specific interactions between autosome and X chromosomes cause hybrid male sterility in Caenorhabditis species. Genetics 212, 801–813 (2019).

    Google Scholar 

  14. Zarkower, D. Somatic sex determination. in WormBook (ed, C.E.R.C.T.) https://doi.org/10.1895/wormbook.1.84.1 (Wormbook.org, 2006).

  15. Ellis, R. E. The persistence of memory”-hermaphroditism in nematodes. Mol. Reprod. Dev. 84, 144–157 (2017).

    Google Scholar 

  16. Ellis, R. E. Sex determination in nematode germ cells. Sex Dev. 16, 305–322 (2022).

    Google Scholar 

  17. Harbin, J. P. et al. Robust sex determination in the Caenorhabditis nigoni germ line. Genetics 229, iyae207 (2025).

    Google Scholar 

  18. Harbin, J. P. & Ellis, R. E. Efficient production of CRISPR/Cas9 gene knockouts in the male/female nematode Caenorhabditis nigoni. MicroPubl Biol. 2023, https://doi.org/10.17912/micropub.biology.000968 (2023).

  19. Hodgkin, J. A genetic analysis of the sex-determining gene, tra-1, in the nematode Caenorhabditis elegans. Genes Dev. 1, 731–745 (1987).

    Google Scholar 

  20. Zarkower, D. & Hodgkin, J. Molecular analysis of the C. elegans sex-determining gene tra-1: a gene encoding two zinc finger proteins. Cell 70, 237–249 (1992).

    Google Scholar 

  21. Kelleher, D. F. et al. Comparative genetics of sex determination: masculinizing mutations in Caenorhabditis briggsae. Genetics 178, 1415–1429 (2008).

    Google Scholar 

  22. Schvarzstein, M. & Spence, A. M. T. heC. elegans sex-determining GLI protein TRA-1A is regulated by sex-specific proteolysis. Dev. Cell. 11, 733–740 (2006).

    Google Scholar 

  23. Chen, P. J. & Ellis, R. E. TRA-1A regulates transcription of fog-3, which controls germ cell fate in C. elegans. Development 127, 3119–3129 (2000).

    Google Scholar 

  24. Yi, W., Ross, J. M. & Zarkower, D. mab-3 is a direct tra-1 target gene regulating diverse aspects of C. elegans male sexual development and behavior. Development 127, 4469–4480 (2000).

    Google Scholar 

  25. Berkseth, M., Ikegami, K., Arur, S., Lieb, J. D. & Zarkower, D. TRA-1 ChIP-seq reveals regulators of sexual differentiation and multilevel feedback in nematode sex determination. Proc. Natl. Acad. Sci. USA. 110, 16033–16038 (2013).

    Google Scholar 

  26. Nigon, V. Effects of polyploidy in a free nematode. C. R. Hebd Seances Acad. Sci. 228, 1161 (1949).

    Google Scholar 

  27. Madl, J. E. & Herman, R. K. Polyploids and sex determination in Caenorhabditis elegans. Genetics 93, 393–402 (1979).

    Google Scholar 

  28. Clarke, E. K., Rivera Gomez, K. A., Mustachi, Z., Murph, M. C. & Schvarzstein, M. Manipulation of ploidy in Caenorhabditis elegans. J. Vis. Exp. 133, 57296 (2018).

  29. Schvarzstein, M., Alam, F., Toure, M. & Yanowitz, J. L. An emerging animal model for querying the role of whole genome duplication in development, evolution, and disease. J Dev Biol 11, 26 (2023).

    Google Scholar 

  30. Guo, Y., Lang, S. & Ellis, R. E. Independent recruitment of F box genes to regulate hermaphrodite development during nematode evolution. Curr. Biol. 19, 1853–1860 (2009).

    Google Scholar 

  31. Darwin, C. On the Origin of Species by Means of Natural Selection, of the Preservation of Favored Races in the Struggle for Life (John Murray, 1859).

  32. Mayr, E. What was the evolutionary synthesis?. Trends Ecol. Evol. 8, 31–34 (1993).

    Google Scholar 

  33. Lenormand, T. & Roze, D. A single theory for the evolution of sex chromosomes and the two rules of speciation. Science 389, eado9032 (2025).

    Google Scholar 

  34. Meyer, B. J. The X chromosome in C. elegans sex determination and dosage compensation. Curr. Opin. Genet. Dev. 74, 101912 (2022).

    Google Scholar 

  35. Li, Y. et al. Aberrant X chromosome dosage compensation causes hybrid male inviability in Caenorhabditis. Proc. Natl. Acad. Sci. USA. 122, e2507166122 (2025).

  36. Kang, L., George, P., Price, D., Sharakhov, I. & Michalak, P. Mapping genomic scaffolds to chromosomes using laser capture microdissection in application to Hawaiian picture-winged drosophila. Cytogenet Genome Res. 152, 204–212 (2017).

    Google Scholar 

  37. Yoshida, K. et al. Chromosome fusions repatterned recombination rate and facilitated reproductive isolation during Pristionchus nematode speciation. Nat. Ecol. Evol. 7, 424–439 (2023).

    Google Scholar 

  38. Cline, T. W. & Meyer, B. J. Vive la difference: males vs females in flies vs worms. Annu. Rev. Genet. 30, 637–702 (1996).

    Google Scholar 

  39. Sharma, R. & Meister, P. Dosage compensation and nuclear organization: cluster to control chromosome-wide gene expression. Curr. Opin. Genet. Dev. 37, 9–16 (2016).

    Google Scholar 

  40. True, J. R. & Haag, E. S. Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev. 3, 109–119 (2001).

    Google Scholar 

  41. Ryan, L. E. & Haag, E. S. Revisiting suppression of interspecies hybrid male lethality in Caenorhabditis nematodes. G3 7, 1211–1214 (2017).

    Google Scholar 

  42. Zan, Y. et al. The genome and GeneBank genomics of allotetraploid Nicotiana tabacum provide insights into genome evolution and complex trait regulation. Nat. Genet. 57, 986–996 (2025).

    Google Scholar 

  43. Xu, P. et al. Manipulation of ploidy in Caenorhabditis elegans. Nat. Commun. 10, 4625 (2019).

    Google Scholar 

  44. Félix, M. A., Braendle, C. & Cutter, A. D. A streamlined system for species diagnosis in Caenorhabditis (Nematoda: Rhabditidae) with name designations for 15 distinct biological species. PLoS ONE 9, e94723 (2014).

    Google Scholar 

  45. Fodor, A., Riddle, D. L., Nelson, F. K. & Golden, J. W. Comparison of a new wild-type Caenorhabditis briggsae with laboratory strains of C. briggsae and C. elegans. Nematologica 29, 203–217 (1983).

    Google Scholar 

  46. Shen, Y. et al. The Caenorhabditis Gli protein TRA-1 makes a transcriptional activator that promotes spermatogenesis. iScience 28, 114108 (2025).

  47. Wei, Q., Shen, Y., Chen, X., Shifman, Y. & Ellis, R. E. Rapid creation of forward-genetics tools for C. briggsae using TALENs: lessons for nonmodel organisms. Mol. Biol. Evol. 31, 468–473 (2014).

    Google Scholar 

  48. Chen, X., Shen, Y. & Ellis, R. E. Dependence of the sperm/oocyte decision on the Nucleosome Remodeling Factor Complex was acquired during recent Caenorhabditis briggsae evolution. Mol. Biol. Evol. 31, 2573–2585 (2014).

    Google Scholar 

  49. Chen, P. J., Cho, S., Jin, S. W. & Ellis, R. E. Specification of germ cell fates by FOG-3 has been conserved during nematode evolution. Genetics 158, 1513–1525 (2001).

    Google Scholar 

  50. Wood, W. B. Determination of pattern and fate in early embryos of Caenorhabditis elegans. Dev. Biol. 5, 57–78 (1988).

    Google Scholar 

  51. Shaham, S. Methods in cell biology. WormBook https://doi.org/10.1895/wormbook.1.49.1 (The C. elegans Research Community, WormBook, 2006).

  52. Fay, D. & Bender, A. SNPs: Introduction and Two-Point Mapping. WormBook 1–10 (The C. elegans Research Community, WormBook, 2008).

Download references

Acknowledgements

We thank Mara Schvarzstein, Eric Haag, and Marie-Anne Felix for strains, Eric Haag for comments, the NIH for grant R01GM121688 and the NSF for grant 2308465.

Author information

Authors and Affiliations

  1. Department of Cell and Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA

    Jonathan P. Harbin, Yongquan Shen, Abdul H. Abubakar & Ronald E. Ellis

Authors
  1. Jonathan P. Harbin
    View author publications

    Search author on:PubMed Google Scholar

  2. Yongquan Shen
    View author publications

    Search author on:PubMed Google Scholar

  3. Abdul H. Abubakar
    View author publications

    Search author on:PubMed Google Scholar

  4. Ronald E. Ellis
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, R.E.; Methodology, R.E., J.H.; Investigation, J.H., Y.S., A.A., R.E.; Supervision, R.E.; Validation, Y.S., J.H., R.E.; Writing, R.E., J.H.; Funding acquisition, R.E.

Corresponding author

Correspondence to Ronald E. Ellis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harbin, J.P., Shen, Y., Abubakar, A.H. et al. Haldane’s law works through X:Autosome incompatibility in Caenorhabditis briggsae/C. nigoni hybrids. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68383-7

Download citation

  • Received: 16 May 2025

  • Accepted: 19 December 2025

  • Published: 13 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68383-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Evolution of gene expression

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing