Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
A neutral cyclic aluminium (I) trimer
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

A neutral cyclic aluminium (I) trimer

  • Imogen Squire  ORCID: orcid.org/0000-0002-6748-253X1 na1,
  • Matthew de Vere-Tucker  ORCID: orcid.org/0009-0001-3736-11711 na1,
  • Michelangelo Tritto  ORCID: orcid.org/0009-0003-6143-68601 na1,
  • Lygia Silva de Moraes1,
  • Tobias Krämer  ORCID: orcid.org/0000-0001-5842-95532 &
  • …
  • Clare Bakewell  ORCID: orcid.org/0000-0003-4053-88441 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemical bonding
  • Organometallic chemistry

Abstract

As part of the quest to develop metal-based redox chemistry beyond the d-block, low oxidation state aluminium complexes have gained wide recognition as discrete and versatile 2-electron reductants. Despite reports of monomeric, dimeric and tetrameric neutral structures, as well as a range of charged aluminyl compounds, neutral trimeric structures have remained notably absent. Furthermore, trimeric nuclearity has previously not been considered when investigating reaction mechanisms. Here, we report two neutral AlI trimers, cyclotrialumanes. The molecules are extensively characterised using both experimental and computational techniques, with the Al–Al bonds described as principally covalent in nature and the trimeric structure shown to be retained in solution. The cyclotrialumanes are highly reactive, activating a range of small molecules and unsaturated substrates (e.g. H2, alkyne, benzene). Most significantly, through a series of extraordinary reactions with ethylene, the cyclotrialumanes are shown to react directly as trimers, forming 5- and 7-membered Al–C ring systems.

Data availability

All processed experimental data generated in this study are provided in the Supplementary Information file. All raw data files are available from the corresponding author upon request. The atomic coordinates generated through computational optimisation are included as a separate Supplementary Data (.txt) file. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2469911-2469921 and 2503435. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    Google Scholar 

  2. Melen, R. L. Frontiers in molecular p-block chemistry: from structure to reactivity. Science 363, 479–484 (2019).

    Google Scholar 

  3. Izatt, R. M. Metal Sustainability: Global Challenges, Consequences, and Prospects (John Wiley & Sons, 2016).

  4. Mudd, G. M., Jowitt, S. M. & Werner, T. T. Global platinum group element resources, reserves and mining – a critical assessment. Sci. Total Environ. 622–623, 614–625 (2018).

    Google Scholar 

  5. Hughes, A. E., Haque, N., Northey, S. A. & Giddey, S. Platinum group metals: a review of resources, production and usage with a focus on catalysts. Resources 10, 93 (2021).

    Google Scholar 

  6. Sverdrup, H. U., Ragnarsdottir, K. V. & Koca, D. Aluminium for the future: modelling the global production, market supply, demand, price and long term development of the global reserves. Resour. Conserv. Recycl. 103, 139–154 (2015).

    Google Scholar 

  7. Liu, Y., Li, J., Ma, X., Yang, Z. & Roesky, H. W. The chemistry of aluminum(I) with β-diketiminate ligands and pentamethylcyclopentadienyl-substituents: synthesis, reactivity and applications. Coord. Chem. Rev. 374, 387–415 (2018).

    Google Scholar 

  8. Hobson, K., Carmalt, C. J. & Bakewell, C. Recent advances in low oxidation state aluminium chemistry. Chem. Sci. 11, 6942–6956 (2020).

    Google Scholar 

  9. Yan, C. & Kinjo, R. Three-membered aluminacycles. J. Am. Chem. Soc. 145, 12967–12986 (2023).

    Google Scholar 

  10. Singh, R. P. & Mankad, N. P. Molecular design of Al(II) intermediates for small molecule activation. JACS Au 5, 2076–2088 (2025).

    Google Scholar 

  11. Dohmeier, C., Robl, C., Tacke, M. & Schnöckel, H. The tetrameric aluminum(I) compound [Al(η5-C5Me5)4]. Angew. Chem. Int. Ed. 30, 564–565 (1991).

    Google Scholar 

  12. Cui, C. et al. Synthesis and structure of a monomeric aluminum(I) compound [HC(CMeNAr)2Al] (Ar=2,6–iPr2C6H3): a stable aluminum analogue of a carbene. Angew. Chem. Int. Ed. 39, 4274–4276 (2000).

    Google Scholar 

  13. Bag, P., Porzelt, A., Altmann, P. J. & Inoue, S. A stable neutral compound with an aluminum–aluminum double bond. J. Am. Chem. Soc. 139, 14384–14387 (2017).

    Google Scholar 

  14. Hofmann, A., Tröster, T., Kupfer, T. & Braunschweig, H. Monomeric Cp3tAl(i): synthesis, reactivity, and the concept of valence isomerism. Chem. Sci. 10, 3421–3428 (2019).

    Google Scholar 

  15. Weetman, C., Porzelt, A., Bag, P., Hanusch, F. & Inoue, S. Dialumenes – aryl vs. silyl stabilisation for small molecule activation and catalysis. Chem. Sci. 11, 4817–4827 (2020).

    Google Scholar 

  16. Queen, J. D., Lehmann, A., Fettinger, J. C., Tuononen, H. M. & Power, P. P. The monomeric alanediyl: AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2): an organoaluminum(I) compound with a one-coordinate aluminum atom. J. Am. Chem. Soc. 142, 20554–20559 (2020).

    Google Scholar 

  17. Zhang, X. & Liu, L. L. A free aluminylene with diverse σ-donating and doubly σ/π-accepting ligand features for transition metals. Angew. Chem. Int. Ed. 60, 27062–27069 (2021).

    Google Scholar 

  18. Falconer, R. L., Byrne, K. M., Nichol, G. S., Krämer, T. & Cowley, M. J. Reversible dissociation of a dialumene. Angew. Chem. Int. Ed. 60, 24702–24708 (2021).

    Google Scholar 

  19. Lehmann, A. et al. The dialuminene AriPr8AlAlAriPr8 (AriPr8=C6H-2,6-(C6H2-2,4,6-iPr3)2-3,5-iPr2). Angew. Chem. Int. Ed. 63, e202412599 (2024).

    Google Scholar 

  20. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).

    Google Scholar 

  21. Hicks, J., Vasko, P., Goicoechea, J. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. 60, 1702–1713 (2021).

  22. Coles, M. P. & Evans, M. J. The emerging chemistry of the aluminyl anion. Chem. Commun. 59, 503–519 (2023).

    Google Scholar 

  23. Dohmeier, C., Loos, D. & Schnöckel, H. Aluminum(I) and gallium(I) compounds: syntheses, structures, and reactions. Angew. Chem. Int. Ed. 35, 129–149 (1996).

    Google Scholar 

  24. Mocker, M., Robl, C. & Schnöckel, H. Donor-stabilized aluminum(I) bromide. Angew. Chem. Int. Ed. 33, 1754–1755 (1994).

    Google Scholar 

  25. Bakewell, C., Hobson, K. & Carmalt, C. J. Exploring equilibria between aluminium(I) and aluminium(III): the formation of dihydroalanes, masked dialumenes and aluminium(I) species. Angew. Chem. Int. Ed. 61, e202205901 (2022).

    Google Scholar 

  26. Squire, I., Tritto, M., Morell, J. & Bakewell, C. Probing the reactivity of a transient Al(I) species with substituted arenes. Chem. Commun. 60, 12908–12911 (2024).

    Google Scholar 

  27. Pauling, L. Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69, 542–553 (1947).

    Google Scholar 

  28. Cordero, B. et al. Covalent radii revisited. Dalton Trans. 2832–2838, https://doi.org/10.1039/B801115J (2008).

  29. Wiberg, N., Blank, T., Kaim, W., Schwederski, B. & Linti, G. Tri(supersilyl)dialanyl (tBu3Si)3Al2• and Tetra(supersilyl)cyclotrialanyl (tBu3Si)4Al3• − new stable radicals of a group 13 element from thermolysis of (tBu3Si)4Al2. Eur. J. Inorg. Chem. 2000, 1475–1481 (2000).

    Google Scholar 

  30. Wright, R. J., Brynda, M. & Power, P. P. Synthesis and structure of the “dialuminyne” Na2[Ar′AlAlAr′] and Na2[(Ar′′Al)3]: Al-Al bonding in Al2Na2 and Al3Na2 clusters. Angew. Chem. Int. Ed. 45, 5953–5956 (2006).

    Google Scholar 

  31. Dhara, D. et al. A discrete trialane with a near-linear Al3 axis. J. Am. Chem. Soc. 146, 33536–33542 (2024).

    Google Scholar 

  32. Yamanashi, R. et al. A Lewis base-free trialumane: enhanced electrophilicity based on consecutive vacant orbitals over three aluminum atoms. Chem. Eur. J. 31, e202501315 (2025).

    Google Scholar 

  33. Davis, J. V. et al. Unique aluminum clusters stabilized by cation-ligand cooperativity. Eur. J. Inorg. Chem. 27, e202300695 (2024).

    Google Scholar 

  34. Li, X.-W., Pennington, W. T. & Robinson, G. H. Metallic system with aromatic character. Synthesis and molecular structure of Na2[[(2,4,6-Me3C6H2)2C6H3]Ga]3 the first cyclogallane. J. Am. Chem. Soc. 117, 7578–7579 (1995).

    Google Scholar 

  35. Schnepf, A. & Doriat, C. A simple synthesis for donor-stabilized Ga2I4 and Ga3I5 species and the X-ray crystal structure of Ga3I5·3PEt3. Chem. Commun. 2111–2112, https://doi.org/10.1039/A703776G (1997).

  36. Lichtenthaler, M. R. et al. Cationic cluster formation versus disproportionation of low-valent indium and gallium complexes of 2,2’-bipyridine. Nat. Commun. 6, 8288 (2015).

    Google Scholar 

  37. Masamune, S., Hanzawa, Y., Murakami, S., Bally, T. & Blount, J. F. Cyclotrisilane (R2Si)3 and disilene (R2Si:SiR2) system: synthesis and characterization. J. Am. Chem. Soc. 104, 1150–1153 (1982).

    Google Scholar 

  38. Masamune, S., Hanzawa, Y. & Williams, D. J. Synthesis of a cyclotrigermane and its conversion to a digermene. J. Am. Chem. Soc. 104, 6136–6137 (1982).

    Google Scholar 

  39. Masamune, S., Sita, L. R. & Williams, D. J. Cyclotristannoxane (R2SnO)3 and cyclotristannane (R2Sn)3 systems. Synthesis and crystal structures. J. Am. Chem. Soc. 105, 630–631 (1983).

    Google Scholar 

  40. Stabenow, F., Saak, W., Marsmann, H. & Weidenbruch, M. Hexaarylcyclotriplumbane: a molecule with a homonuclear ring system of lead. J. Am. Chem. Soc. 125, 10172–10173 (2003).

    Google Scholar 

  41. Wright, R. J., Phillips, A. D., Hino, S. & Power, P. P. Synthesis and reactivity of dimeric Ar’TlTlAr‘ and trimeric (Ar“Tl)3 (Ar‘, Ar“ = bulky terphenyl group) thallium(I) derivatives: Tl(I)−Tl(I) bonding in species ligated by monodentate ligands. J. Am. Chem. Soc. 127, 4794–4799 (2005).

    Google Scholar 

  42. Dhara, D., Jayaraman, A., Härterich, M., Dewhurst, R. D. & Braunschweig, H. Generation of a transient base-stabilised arylalumylene for the facile deconstruction of aromatic molecules. Chem. Sci. 13, 5631–5638 (2022).

    Google Scholar 

  43. Zou, W. et al. London dispersion effects in a distannene/tristannane equilibrium: energies of their interconversion and the suppression of the monomeric stannylene intermediate. Angew. Chem. Int. Ed. 62, e202301919 (2023).

    Google Scholar 

  44. Schnitter, C. et al. Synthesis and characterization of tris(trimethylsilyl)methyl halide derivatives of aluminum: potential precursors for low-valent aluminum compounds. Crystal structures of [{(Me3Si)3CAlF2}3], [(Me3Si)3CAlX2·THF] (X = Cl, Br, I), and [{(THF)2K(Me3Si)3CAlF2(μ-F)F2AlC(SiMe3)3}2]. Organometallics 17, 2249–2257 (1998).

  45. Waezsada, S. D. et al. Aminodimethylalanes (R1R2NAlMe2) as useful synthetic precursors of aminoalane difluorides using trimethyltin fluoride: crystal structures of (2,6-i-Pr2C6H3)N(SiMe3)AlMe2 and (2,6-i-Pr2C6H3)N(SiMe3)AlF2. Organometallics 16, 1260–1264 (1997).

    Google Scholar 

  46. Kraft, A. et al. Synthesis, characterization, and application of two Al(ORF)3 Lewis superacids. Chem. Eur. J. 18, 9371–9380 (2012).

    Google Scholar 

  47. Jacquemin, D. et al. On the performances of the M06 family of density functionals for electronic excitation energies. J. Chem. Theory Comput. 6, 2071–2085 (2010).

    Google Scholar 

  48. Laurent, A. D. & Jacquemin, D. TD-DFT benchmarks: a review. Int. J. Quantum Chem. 113, 2019–2039 (2013).

    Google Scholar 

  49. Chen, P. et al. Aromaticity in a palladium-capped Al6 trigonal prismatic cluster. J. Am. Chem. Soc. 147, 21153–21161 (2025).

    Google Scholar 

  50. Wu, J. I.-C., Schleyer, P. & von, R. Hyperconjugation in hydrocarbons: not just a “mild sort of conjugation”. Pure Appl. Chem. 85, 921–940 (2013).

    Google Scholar 

  51. Cremer, D. & Kraka, E. A description of the chemical bond in terms of local properties of electron density and energy. Croat. Chem. Acta 57, 1259–1281 (1984).

    Google Scholar 

  52. Koumpouras, K. & Larsson, J. A. Distinguishing between chemical bonding and physical binding using electron localization function (ELF). J. Phys. Condens. Matter 32, 315502 (2020).

    Google Scholar 

  53. Koshino, K. & Kinjo, R. A highly strained Al–Al σ-bond in dianionic aluminum analog of oxirane for molecule activation. J. Am. Chem. Soc. 143, 18172–18180 (2021).

    Google Scholar 

  54. Cui, C. et al. Isolation of a 1,2-dialuminacyclobutene. Angew. Chem. Int. Ed. 45, 2245–2247 (2006).

    Google Scholar 

  55. Agou, T., Nagata, K. & Tokitoh, N. Synthesis of a dialumene‐benzene adduct and its reactivity as a synthetic equivalent of a dialumene. Angew. Chem. Int. Ed. 52, 10818–10821 (2013).

    Google Scholar 

  56. Nagata, K. et al. Activation of dihydrogen by masked doubly bonded aluminum species. Angew. Chem. Int. Ed. 55, 12877–12880 (2016).

  57. Bakewell, C., White, A. J. P. & Crimmin, M. R. Reversible alkene binding and allylic C–H activation with an aluminium(I) complex. Chem. Sci. 10, 2452–2458 (2019).

    Google Scholar 

  58. Caputo, C. A. et al. Counterintuitive mechanisms of the addition of hydrogen and simple olefins to heavy group 13 alkene analogues. J. Am. Chem. Soc. 135, 1952–1960 (2013).

    Google Scholar 

Download references

Acknowledgements

C.B. thanks the Engineering and Physical Sciences Research Council (grant number EP/Y000129/1) for funding. King’s College London NetZero centre is thanked for studentship funding (M.T.). Jeremy Cockcroft (UCL) and Jens Najorka (NHM) are thanked for helping us access SCXRD. Thomas Hicks and the CBS NMR Facility are thanked for support running NMR spectroscopy experiments. Alberto Collauto (Imperial College London) is thanked for assistance with EPR spectroscopy.

Author information

Author notes
  1. These authors contributed equally: Imogen Squire, Matthew de Vere-Tucker, Michelangelo Tritto.

Authors and Affiliations

  1. Department of Chemistry, King’s College London, Britannia House, London, UK

    Imogen Squire, Matthew de Vere-Tucker, Michelangelo Tritto, Lygia Silva de Moraes & Clare Bakewell

  2. School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland

    Tobias Krämer

Authors
  1. Imogen Squire
    View author publications

    Search author on:PubMed Google Scholar

  2. Matthew de Vere-Tucker
    View author publications

    Search author on:PubMed Google Scholar

  3. Michelangelo Tritto
    View author publications

    Search author on:PubMed Google Scholar

  4. Lygia Silva de Moraes
    View author publications

    Search author on:PubMed Google Scholar

  5. Tobias Krämer
    View author publications

    Search author on:PubMed Google Scholar

  6. Clare Bakewell
    View author publications

    Search author on:PubMed Google Scholar

Contributions

I.S. and M.d.V.T. designed and conducted experiments and collected and analysed all data. M.T. conducted the computational analysis. L.S.M. supported SCXRD data analysis. T.K. provided computational support and direction and hosted M.T. for a research visit. C.B. conceived the project, acquired funding, supervised the research and wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Tobias Krämer or Clare Bakewell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Robert Kretschmer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squire, I., de Vere-Tucker, M., Tritto, M. et al. A neutral cyclic aluminium (I) trimer. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68432-1

Download citation

  • Received: 20 November 2025

  • Accepted: 06 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68432-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing