Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Distinct magneto-optical response of Frenkel and Wannier excitons in CrSBr
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 January 2026

Distinct magneto-optical response of Frenkel and Wannier excitons in CrSBr

  • Maciej Śmiertka  ORCID: orcid.org/0009-0005-6939-01521,
  • Michał Rygała  ORCID: orcid.org/0000-0001-7210-20632,
  • Katarzyna Posmyk  ORCID: orcid.org/0000-0003-4655-52311,2,
  • Paulina Peksa1,2,
  • Mateusz Dyksik  ORCID: orcid.org/0000-0003-4945-87951,
  • Dimitar Pashov  ORCID: orcid.org/0000-0002-4292-97453,
  • Kseniia Mosina  ORCID: orcid.org/0000-0003-3570-53374,
  • Zdeněk Sofer  ORCID: orcid.org/0000-0002-1391-44484,
  • Mark van Schilfgaarde5,
  • Florian Dirnberger  ORCID: orcid.org/0000-0002-2932-28506,7,8,
  • Michał Baranowski  ORCID: orcid.org/0000-0002-5974-08501,
  • Swagata Acharya  ORCID: orcid.org/0000-0001-8074-00305 &
  • …
  • Paulina Plochocka  ORCID: orcid.org/0000-0002-4019-61381,2 

Nature Communications , Article number:  (2026) Cite this article

  • 2462 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic properties and materials
  • Magnetic properties and materials
  • Two-dimensional materials

Abstract

Excitons in recently discovered two-dimensional magnetic semiconductors have emerged as a promising vehicle for optoelectronic and spin-photonic applications. To exploit novel possibilities magnetic degrees of freedom offer, insight into the interplay of magnetism, lattice and optical excitations becomes essential. We consider Chromium Sulphur Bromide, which has two kinds of excitons, XB at 1.8 eV and XA at 1.38 eV. Here we show, through a combination of many body perturbation theory and experiment, that XB is an order of magnitude more sensitive to magnetic and lattice perturbations than XA. We trace the difference to the latter being localised (Frenkel-like), while the former is delocalised (Wannier-Mott-like) – a coexistence rarely seen in two-dimensional materials. This finding is supported by the strong temperature and magnetic field (up to 85 Tesla) dependent shifts in optical response for XB (much smaller for XA), and we show it is related to XB’s tendency for delocalisation (in-plane and out-of-plane) and enhanced coupling with Ag phonon modes.

Similar content being viewed by others

Magnetically confined surface and bulk excitons in a layered antiferromagnet

Article 19 February 2025

Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime

Article Open access 25 September 2023

Magnon-mediated exciton–exciton interaction in a van der Waals antiferromagnet

Article 21 March 2025

Data availability

The magneto—optical data generated and/or analysed during the study are available without restrictions in the Zenodo database under the following online repository accesion code: https://doi.org/10.5281/zenodo.17941646.

References

  1. Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Google Scholar 

  2. Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832 (2019).

    Google Scholar 

  3. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Google Scholar 

  4. Dyksik, M. et al. Brightening of dark excitons in 2d perovskites. Sci. Adv. 7, eabk0904 (2021).

    Google Scholar 

  5. Zhang, X.-X. et al. Magnetic brightening and control of dark excitons in monolayer wse2. Nat. Nanotechnol. 12, 883 (2017).

    Google Scholar 

  6. Rosati, R. et al. Dark exciton anti-funneling in atomically thin semiconductors. Nat. Commun. 12, 7221 (2021).

    Google Scholar 

  7. Tran, K. et al. Evidence for moiré excitons in van der waals heterostructures. Nature 567, 71 (2019).

    Google Scholar 

  8. Malic, E., Perea-Causin, R., Rosati, R., Erkensten, D. & Brem, S. Exciton transport in atomically thin semiconductors. Nat. Commun. 14, 3430 (2023).

    Google Scholar 

  9. Zhao, S. et al. Excitons in mesoscopically reconstructed moiré heterostructures. Nat. Nanotechnol. 18, 572 (2023).

    Google Scholar 

  10. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der waals crystals. Nature 546, 265 (2017).

    Google Scholar 

  11. Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin feps3. Nano Lett. 16, 7433 (2016).

    Google Scholar 

  12. Huang, B. et al. Layer-dependent ferromagnetism in a van der waals crystal down to the monolayer limit. Nature 546, 270 (2017).

    Google Scholar 

  13. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2d materials and heterostructures. Nat. Nanotechnol. 14, 408 (2019).

    Google Scholar 

  14. Wang, Q. H. et al. The magnetic genome of two-dimensional van der waals materials. ACS Nano 16, 6960 (2022).

    Google Scholar 

  15. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2d cri3 by electrostatic doping. Nat. Nanotechnol. 13, 549 (2018).

    Google Scholar 

  16. Huang, B. et al. Electrical control of 2d magnetism in bilayer cri 3. Nat. Nanotechnol. 13, 544 (2018).

    Google Scholar 

  17. Wu, M., Li, Z., Cao, T. & Louie, S. G. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat. Commun. 10, 2371 (2019a).

    Google Scholar 

  18. Seyler, K. L. et al. Ligand-field helical luminescence in a 2d ferromagnetic insulator. Nat. Phys. 14, 277 (2018).

    Google Scholar 

  19. Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2d magnetic semiconductor. Nat. Mater. 20, 1657 (2021).

    Google Scholar 

  20. Dirnberger, F. et al. Magneto-optics in a van der waals magnet tuned by self-hybridized polaritons. Nature 620, 533 (2023).

    Google Scholar 

  21. Zhang, P. et al. All-optical switching of magnetization in atomically thin cri3. Nat. Mater. 21, 1373 (2022).

    Google Scholar 

  22. Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2d layered magnetic materials. Nat. Rev. Phys. 1, 646 (2019).

    Google Scholar 

  23. Grzeszczyk, M. et al. Strongly Correlated Exciton-Magnetization System for Optical Spin Pumping in CrBr3 and CrI3. Adv. Mater. 35, 2209513 (2023).

    Google Scholar 

  24. Göser, O., Paul, W. & Kahle, H. Magnetic properties of crsbr. J. Magn. Magn. Mater. 92, 129 (1990).

    Google Scholar 

  25. Ziebel, M. E. et al. Crsbr: An air-stable, two-dimensional magnetic semiconductor. Nano Lett. 24, 4319 (2024).

    Google Scholar 

  26. Shao, Y. et al. Magnetically confined surface and bulk excitons in a layered antiferromagnet. Nat. Mater. 24, 391–398 (2025).

  27. Marques-Moros, F., Boix-Constant, C., Mañas-Valero, S., Canet-Ferrer, J. & Coronado, E. Interplay between optical emission and magnetism in the van der waals magnetic semiconductor crsbr in the two-dimensional limit. ACS Nano 17, 13224 (2023).

    Google Scholar 

  28. Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2d semiconductor. Nature 609, 282 (2022).

    Google Scholar 

  29. Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der waals magnet. Nat. Commun. 14, 8261 (2023).

    Google Scholar 

  30. Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191 (1937).

    Google Scholar 

  31. Kang, S. et al. Coherent many-body exciton in van der waals antiferromagnet nips3. Nature 583, 785 (2020).

    Google Scholar 

  32. Dirnberger, F. et al. Spin-correlated exciton–polaritons in a van der waals magnet. Nat. Nanotechnol. 17, 1060 (2022).

    Google Scholar 

  33. Frenkel, J. On the transformation of light into heat in solids. i. Phys. Rev. 37, 17 (1931a).

    Google Scholar 

  34. Frenkel, J. On the transformation of light into heat in solids. ii. Phys. Rev. 37, 1276 (1931b).

    Google Scholar 

  35. Jelley, E. E. Spectral absorption and fluorescence of dyes in the molecular state. Nature 138, 1009 (1936).

    Google Scholar 

  36. West, B. A., Womick, J. M., McNeil, L., Tan, K. J. & Moran, A. M. Ultrafast dynamics of frenkel excitons in tetracene and rubrene single crystals. J. Phys. Chem. C. 114, 10580 (2010).

    Google Scholar 

  37. Cunningham, B., Grüning, M., Pashov, D. & van Schilfgaarde, M. QS\(G\widehat{W}\): Quasiparticle Self Consistent GW with Ladder Diagrams in W. Phys. Rev. B 108, 165104 (2023).

    Google Scholar 

  38. Tanabe, Y. & Sugano, S. On the absorption spectra of complex ions ii. J. Phys. Soc. Jpn. 9, 766 (1954).

    Google Scholar 

  39. Sugano, S. Multiplets of transition-metal ions in crystals (Elsevier, 2012).

  40. Rydberg, J. R. Xxxiv. on the structure of the line-spectra of the chemical elements. Lond., Edinb., Dublin Philos. Mag. J. Sci. 29, 331 (1890).

    Google Scholar 

  41. Ritz, W. On a new law of series spectra. Astrophys. J. 28, 237 (1908).

    Google Scholar 

  42. Lin, K. et al. Strong exciton-phonon coupling as a fingerprint of magnetic ordering in van der Waals layered CrSBr. ACS Nano 18, 2898 (2024).

    Google Scholar 

  43. Wang, T. et al. Magnetically-dressed crsbr exciton-polaritons in ultrastrong coupling regime. Nat. Commun. 14, 5966 (2023).

    Google Scholar 

  44. van Schilfgaarde, M., Kotani, T. & Faleev, S. Quasiparticle self-consistent g w theory. Phys. Rev. Lett. 96, 226402 (2006).

    Google Scholar 

  45. Pashov, D. et al. Questaal: a package of electronic structure methods based on the linear muffin-tin orbital technique. Comp. Phys. Comm. 249, 107065 (2020).

    Google Scholar 

  46. Klein, J. et al. The Bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano 17, 5316 (2023).

    Google Scholar 

  47. Qian, T.-X., Zhou, J., Cai, T.-Y. & Ju, S. Anisotropic electron-hole excitation and large linear dichroism in the two-dimensional ferromagnet crsbr with in-plane magnetization. Phys. Rev. Res. 5, 033143 (2023).

    Google Scholar 

  48. Watson, M. D. et al. Giant exchange splitting in the electronic structure of a-type 2d antiferromagnet crsbr. npj 2D Mater. Appl. 8, 54 (2024).

    Google Scholar 

  49. Smolenski, S. et al. Large exciton binding energy in a bulk van der waals magnet from quasi-1d electronic localization. Nat. Commun. 16, 1134 (2025).

    Google Scholar 

  50. Bianchi, M. et al. Paramagnetic electronic structure of crsbr: Comparison between ab initio gw theory and angle-resolved photoemission spectroscopy. Phys. Rev. B 107, 235107 (2023).

    Google Scholar 

  51. Acharya, S. et al. A theory for colors of strongly correlated electronic systems. Nat. Commun. 14, 5565 (2023).

    Google Scholar 

  52. Acharya, S. et al. Real-and momentum-space description of the excitons in bulk and monolayer chromium tri-halides. npj 2D Mater. Appl. 6, 1 (2022).

    Google Scholar 

  53. Acharya, S. et al. Electronic structure of chromium trihalides beyond density functional theory. Phys. Rev. B 104, 155109 (2021a).

    Google Scholar 

  54. Qiu, D. Y., Da Jornada, F. H. & Louie, S. G. Optical spectrum of mos 2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

    Google Scholar 

  55. Shi, J. et al. Giant magneto-exciton coupling in 2D van der Waals CrSBr. ACS nano 19, 29977–29987 (2025).

  56. Komar, R. et al. Colossal magneto-excitonic effects in 2d van der waals magnetic semiconductor crsbr. arXiv preprint arXiv:2409.00187 (2024).

  57. Nash, K. J., Skolnick, M. S., Claxton, P. A. & Roberts, J. S. Diamagnetism as a probe of exciton localization in quantum wells. Phys. Rev. B 39, 10943 (1989).

    Google Scholar 

  58. Telford, E. J. et al. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 21, 754 (2022).

    Google Scholar 

  59. Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der waals semiconductor crsbr. Adv. Mater. 32, 2003240 (2020).

    Google Scholar 

  60. Datta, B. et al. Magnon-mediated exciton–exciton interaction in a van der Waals antiferromagnet. Nat. Mater. 24, 1027–1033 (2025).

  61. Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).

    Google Scholar 

  62. Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn. 92, 012001 (2023).

    Google Scholar 

  63. Baldini, E. et al. Electron–phonon-driven three-dimensional metallicity in an insulating cuprate. Proc. Natl. Acad. Sci. 117, 6409 (2020).

    Google Scholar 

  64. Weber, C. et al. Role of the lattice in the light-induced insulator-to-metal transition in vanadium dioxide. Phys. Rev. Res. 2, 023076 (2020).

    Google Scholar 

  65. Acharya, S. et al. Metal-insulator transition in copper oxides induced by apex displacements. Phys. Rev. X 8, 021038 (2018).

    Google Scholar 

  66. Linhart, W. et al. Optical markers of magnetic phase transition in crsbr. J. Mater. Chem. C. 11, 8423 (2023).

    Google Scholar 

  67. Pawbake, A. et al. Raman scattering signatures of strong spin-phonon coupling in the bulk magnetic van der waals material crsbr. Phys. Rev. B 107, 075421 (2023).

    Google Scholar 

  68. Aryasetiawan, F. & Gunnarsson, O. Electronic structure of NiO in the GW approximation. Phys. Rev. Lett. 74, 3221 (1995).

    Google Scholar 

  69. Wu, M., Li, Z., Cao, T. & Louie, S. G. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat. Commun. 10, 2371 (2019b).

    Google Scholar 

  70. Acharya, S. et al. Importance of charge self-consistency in first-principles description of strongly correlated systems. npj Comput. Mater. 7, 1 (2021b).

    Google Scholar 

  71. Friedrich, C., Müller, M. C. & Blügel, S. Band convergence and linearization error correction of all-electron GW calculations: The extreme case of zinc oxide. Phys. Rev. B 83, 081101 (2011).

    Google Scholar 

Download references

Acknowledgements

This work was authored in part by the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. For S.A., D.P., and MvS, funding was provided by the Computational Chemical Sciences programme within the Office of Basic Energy Sciences, U.S. Department of Energy. S.A., D.P., and M.v.S. acknowledge the use of the National Energy Research Scientific Computing Centre, under Contract No. DE-AC02-05CH11231 using NERSC award BES-ERCAP0021783 and we also acknowledge that a portion of the research was performed using computational resources sponsored by the Department of Energy’s Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory and computational resources provided by the Oakridge leadership Computing Facility. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. Z.S and K.M. were supported by project LUAUS25268 from Ministry of Education Youth and Sports (MEYS) and by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR). The publication was created as part of a project co-financed by the Polish Ministry of Science and Higher Education under contract no. 2025/WK/01.

Author information

Authors and Affiliations

  1. Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland

    Maciej Śmiertka, Katarzyna Posmyk, Paulina Peksa, Mateusz Dyksik, Michał Baranowski & Paulina Plochocka

  2. Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Grenoble Alpes, Université Toulouse, Université Toulouse 3, INSA-T, Grenoble and Toulouse, France

    Michał Rygała, Katarzyna Posmyk, Paulina Peksa & Paulina Plochocka

  3. King’s College London, Theory and Simulation of Condensed Matter, The Strand, London, UK

    Dimitar Pashov

  4. Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Prague 6, Czech Republic

    Kseniia Mosina & Zdeněk Sofer

  5. National Renewable Energy Laboratory, Golden, CO, USA

    Mark van Schilfgaarde & Swagata Acharya

  6. Physics Department, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany

    Florian Dirnberger

  7. Zentrum für QuantumEngineering (ZQE), Technical University of Munich, Garching, Germany

    Florian Dirnberger

  8. Munich Center for Quantum Science and Technology (MCQST), Technical University of Munich, Garching, Germany

    Florian Dirnberger

Authors
  1. Maciej Śmiertka
    View author publications

    Search author on:PubMed Google Scholar

  2. Michał Rygała
    View author publications

    Search author on:PubMed Google Scholar

  3. Katarzyna Posmyk
    View author publications

    Search author on:PubMed Google Scholar

  4. Paulina Peksa
    View author publications

    Search author on:PubMed Google Scholar

  5. Mateusz Dyksik
    View author publications

    Search author on:PubMed Google Scholar

  6. Dimitar Pashov
    View author publications

    Search author on:PubMed Google Scholar

  7. Kseniia Mosina
    View author publications

    Search author on:PubMed Google Scholar

  8. Zdeněk Sofer
    View author publications

    Search author on:PubMed Google Scholar

  9. Mark van Schilfgaarde
    View author publications

    Search author on:PubMed Google Scholar

  10. Florian Dirnberger
    View author publications

    Search author on:PubMed Google Scholar

  11. Michał Baranowski
    View author publications

    Search author on:PubMed Google Scholar

  12. Swagata Acharya
    View author publications

    Search author on:PubMed Google Scholar

  13. Paulina Plochocka
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.Ś. carried out all optical experiments, drafted the text and figures representing experimental results of the main manuscript and the supplementary information. M.R. participated in low magnetic field measurements and data processing, K.P. and P.Pe supported high magnetic field measurements. M.D. participated in data analysis and interpretation. D.P. contributed to the theoretical calculations. K.M. synthesised the CrSBr crystal with the support and supervision of Z.S. M.v.S. contributed to the theoretical calculation and manuscript writing. F.D. was involved in data interpretation and manuscript writing. M.B., together with P.P. supervised magnetic field measurements, participated in data analysis interpretation, and manuscript writing. S.A. performed theoretical calculations, helped in interpreting the observations, conceived the main theme of the work and contributed to manuscript writing.

Corresponding authors

Correspondence to Michał Baranowski, Swagata Acharya or Paulina Plochocka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

: Nature Communications thanks Yu Ye and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Śmiertka, M., Rygała, M., Posmyk, K. et al. Distinct magneto-optical response of Frenkel and Wannier excitons in CrSBr. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68482-5

Download citation

  • Received: 02 July 2025

  • Accepted: 08 January 2026

  • Published: 17 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68482-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing