Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Artificial gauge fields and dimensions in a polariton hofstadter ladder
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Artificial gauge fields and dimensions in a polariton hofstadter ladder

  • Simon Widmann  ORCID: orcid.org/0009-0001-9945-68541,2,
  • Jonas Bellmann1,2,
  • Johannes Düreth  ORCID: orcid.org/0009-0006-7772-55111,2,
  • Siddhartha Dam  ORCID: orcid.org/0000-0002-0902-47331,2,
  • Christian G. Mayer  ORCID: orcid.org/0009-0008-9925-76371,2,
  • Philipp Gagel1,2,
  • Simon Betzold  ORCID: orcid.org/0000-0001-9217-18321,2,
  • Monika Emmerling1,2,
  • Subhaskar Mandal  ORCID: orcid.org/0000-0002-3202-93643,4,
  • Rimi Banerjee3,
  • Timothy C. H. Liew  ORCID: orcid.org/0000-0003-2568-72943,
  • Ronny Thomale  ORCID: orcid.org/0000-0002-3979-88362,5,
  • Sven Höfling1,2 &
  • …
  • Sebastian Klembt  ORCID: orcid.org/0000-0002-4387-87081,2 nAff6 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Photonic devices
  • Polaritons
  • Optical spectroscopy
  • Topological matter

Abstract

Artificial gauge fields allow uncharged particles such as photons to mimic the behaviour of charged particles subjected to magnetic fields, providing a powerful platform to alter the effective dynamics and exploring topological physics. Topological exciton-polariton lasers have attracted considerable interest, but often require strong magnetic fields to realise propagating topological edge states. Here we experimentally realise the topological Hall effect in a micron-scale micropillar chain by using an artificial gauge field, exploiting the circular polarisation of polaritons as an artificial dimension. Careful rotational alignment of elliptical micropillars induces strictly polarisation-dependent edge-state propagation, demonstrating non-reciprocal transport of the polariton pseudospins. Our results demonstrate that the dimensionality limitation of topological interface states as well as requirements for strong external magnetic fields in coupled topological laser arrays can be overcome. Our results open new ways towards the implementation of topological polariton lattices and related optically active devices with additional artificial dimension.

Data availability

The data generated in this study have been deposited in the wuedata database [wuedata.uni-wuerzburg.de]. The data is listed under this publication link: https://doi.org/10.58160/xfkn48dhnj1gbt2g.

References

  1. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Google Scholar 

  2. Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).

    Google Scholar 

  3. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Google Scholar 

  4. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    Google Scholar 

  5. Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Google Scholar 

  6. Bandres, M. A. et al. Topological insulator laser: Experiments. Science 359, eaar4005 (2018).

    Google Scholar 

  7. Dikopoltsev, A. et al. Topological insulator vertical-cavity laser array. Science 373, 1514–1517 (2021).

    Google Scholar 

  8. Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).

    Google Scholar 

  9. Leefmans, C. R. et al. Topological temporally mode-locked laser. Nat. Phys. 20, 852–858 (2024).

    Google Scholar 

  10. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Google Scholar 

  11. Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).

    Google Scholar 

  12. Lumer, Y. et al. Light guiding by artificial gauge fields. Nat. Photon. 13, 339–345 (2019).

    Google Scholar 

  13. Umucalilar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    Google Scholar 

  14. Bandres, M. A., Zilberberg, O. & Sukhorukov, A. Special topic on synthetic gauge field photonics. APL Photon. 7, 050401 (2022).

    Google Scholar 

  15. Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    Google Scholar 

  16. Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4d quantum hall physics. Nature 553, 59–62 (2018).

    Google Scholar 

  17. Lohse, M., Schweizer, C., Price, H. M., Zilberberg, O. & Bloch, I. Exploring 4d quantum hall physics with a 2d topological charge pump. Nature 553, 55–58 (2018).

    Google Scholar 

  18. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Google Scholar 

  19. Schneider, C. et al. Exciton-polariton trapping and potential landscape engineering. Rep. Prog. Phys. 80, 016503 (2016).

    Google Scholar 

  20. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    Google Scholar 

  21. Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous hall drift. Nature 578, 381–385 (2020).

    Google Scholar 

  22. Berloff, N. G. et al. Realizing the classical XY hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

    Google Scholar 

  23. Kasprzak, J. et al. Bose-einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Google Scholar 

  24. Harper, P. G. Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A 68, 874 (1955).

    Google Scholar 

  25. Hofstadter, D. R. Energy levels and wave functions of bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    Google Scholar 

  26. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Google Scholar 

  27. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Google Scholar 

  28. Mandal, S., Banerjee, R. & Liew, T. C. H. From the topological spin-hall effect to the non-hermitian skin effect in an elliptical micropillar chain. ACS Photon. 9, 527–539 (2022).

    Google Scholar 

  29. Klaas, M. et al. Nonresonant spin selection methods and polarization control in exciton-polariton condensates. Phys. Rev. B 99, 115303 (2019).

    Google Scholar 

  30. Iorsh, I. et al. Polarization beats in a pillar microcavity. Superlattices Microstruct. 47, 24–28 (2010).

    Google Scholar 

  31. Mandal, S., Banerjee, R., Ostrovskaya, E. A. & Liew, T. C. H. Nonreciprocal transport of exciton polaritons in a non-hermitian chain. Phys. Rev. Lett. 125, 123902 (2020).

    Google Scholar 

  32. Liang, J. et al. Polariton spin hall effect in a rashba-dresselhaus regime at room temperature. Nat. Photon. 18, 357–362 (2024).

    Google Scholar 

  33. Wang, Y., Adamo, G., Ha, S. T., Tian, J. & Soci, C. Electrically generated exciton polaritons with spin on-demand. Adv. Mater. 37, 2412952 (2025).

    Google Scholar 

Download references

Acknowledgements

The Würzburg group acknowledges financial support by the German Research Foundation (DFG) under Germany’s Excellence Strategy-EXC2147 “ct.qmat” (project id 390858490) and within the project KL3124/3.1. T.C.H.L. was supported by the Singapore Ministry of Education (MOE) grant (MOE-MOET32023-0003) “Quantum Geometric Advantage”.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. Sebastian Klembt

    Present address: Lehrstuhl für Experimentelle Physik 1, Universität Würzburg, Am Hubland, Würzburg, Germany

Authors and Affiliations

  1. Technische Physik, Universität Würzburg, Am Hubland, Würzburg, Germany

    Simon Widmann, Jonas Bellmann, Johannes Düreth, Siddhartha Dam, Christian G. Mayer, Philipp Gagel, Simon Betzold, Monika Emmerling, Sven Höfling & Sebastian Klembt

  2. Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, Würzburg, Germany

    Simon Widmann, Jonas Bellmann, Johannes Düreth, Siddhartha Dam, Christian G. Mayer, Philipp Gagel, Simon Betzold, Monika Emmerling, Ronny Thomale, Sven Höfling & Sebastian Klembt

  3. Division of Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore

    Subhaskar Mandal, Rimi Banerjee & Timothy C. H. Liew

  4. Department of Physics, Indian Institute of Technology Bombay, Mumbai, India

    Subhaskar Mandal

  5. Lehrstuhl für Theoretische Physik 1, Universität Würzburg, Am Hubland, Würzburg, Germany

    Ronny Thomale

Authors
  1. Simon Widmann
    View author publications

    Search author on:PubMed Google Scholar

  2. Jonas Bellmann
    View author publications

    Search author on:PubMed Google Scholar

  3. Johannes Düreth
    View author publications

    Search author on:PubMed Google Scholar

  4. Siddhartha Dam
    View author publications

    Search author on:PubMed Google Scholar

  5. Christian G. Mayer
    View author publications

    Search author on:PubMed Google Scholar

  6. Philipp Gagel
    View author publications

    Search author on:PubMed Google Scholar

  7. Simon Betzold
    View author publications

    Search author on:PubMed Google Scholar

  8. Monika Emmerling
    View author publications

    Search author on:PubMed Google Scholar

  9. Subhaskar Mandal
    View author publications

    Search author on:PubMed Google Scholar

  10. Rimi Banerjee
    View author publications

    Search author on:PubMed Google Scholar

  11. Timothy C. H. Liew
    View author publications

    Search author on:PubMed Google Scholar

  12. Ronny Thomale
    View author publications

    Search author on:PubMed Google Scholar

  13. Sven Höfling
    View author publications

    Search author on:PubMed Google Scholar

  14. Sebastian Klembt
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.W., J.B, J.D, C.G.M. and S.B. built the experimental set-up, performed the experiments and analysed the data. S.D. and P.G. grew the samples by molecular beam epitaxy. M.E., S.W. and J.B. realised the layout, etching and nanofabrication of the samples. S.M., R.B., T.C.H.L. and R.T. realised the theoretical calculations and numerical simulations. All authors participated in the scientific discussions about all aspects of the work. S.W. and S.K. wrote the original draft of the paper. All authors reviewed and edited the paper. T.C.H.L. and S.K. conceived the idea. S.H. and S.K. supervised the work.

Corresponding authors

Correspondence to Simon Widmann or Sebastian Klembt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widmann, S., Bellmann, J., Düreth, J. et al. Artificial gauge fields and dimensions in a polariton hofstadter ladder. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68530-0

Download citation

  • Received: 27 June 2025

  • Accepted: 09 January 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68530-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing