Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Twist-stacked black phosphorus for wide-spectral chiral photodetection
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 January 2026

Twist-stacked black phosphorus for wide-spectral chiral photodetection

  • Hao Jiang1,2 na1,
  • Liheng An1,2 na1,
  • Xiaolong Chen  ORCID: orcid.org/0000-0001-6208-31613,
  • Guoqiang Xu  ORCID: orcid.org/0000-0002-8729-02874,
  • Yan Zhang  ORCID: orcid.org/0000-0002-9926-35341,2,
  • Jintao Fu5,6,
  • Xuran Dai1,2,
  • Yuzhe Yang1,2,
  • Ruihua He  ORCID: orcid.org/0009-0002-4003-54972,
  • Xingzhan Wei  ORCID: orcid.org/0000-0003-4469-66396,
  • Xiang-Long Yu  ORCID: orcid.org/0000-0001-6342-38267,
  • Cheng-Wei Qiu  ORCID: orcid.org/0000-0002-6605-500X5 &
  • …
  • Weibo Gao  ORCID: orcid.org/0000-0003-3971-621X1,2,8,9 

Nature Communications , Article number:  (2026) Cite this article

  • 2495 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Optoelectronic devices and components
  • Two-dimensional materials

Abstract

On-chip integrable circularly polarized light (CPL) detectors hold significant potential for applications in optical communications, bioimaging, quantum information, and intelligent sensing, enabling chip-scale chiral light detection and information processing. However, current developments in materials and structural designs struggle to achieve wide-spectral detection capability while maintaining high circular polarization discrimination. This limitation significantly constrains the practical applicability of such detectors in complex environments and object detection scenarios. Herein, we propose a CPL detector based on a twist-stacked black phosphorus (b-p) system. By utilizing twisted b-p as an artificially constructed unit with chiral response and designing a symmetry-stacked sandwich structure in space, we achieve bipolar circular polarization detection and imaging across a wide wavelength range (from visible light to mid-infrared), with peak responsivity reaching 0.1 A/W. This design demonstrates both theoretically and experimentally the feasibility of utilizing a twist-stacked b-p system for wide-spectral CPL detection. This advancement offers valuable insights for addressing the bottlenecks in chip-integrated CPL detection technology.

Similar content being viewed by others

Theoretical and experimental analysis of circularly polarized luminescence spectrophotometers for artifact-free measurements using a single CCD camera

Article Open access 24 February 2023

Spin detector for panchromatic circularly polarized light detection

Article Open access 05 May 2025

High discrimination ratio, broadband circularly polarized light photodetector using dielectric achiral nanostructures

Article Open access 27 September 2024

Data availability

All the technical details for producing the figures are provided in the supplementary information. The data are available from the corresponding authors X. C. (chenxl@sustech.edu.cn); X. L. Y. (yuxlong6@mail.sysu.edu.cn); C. W. Q. (chengwei.qiu@nus.edu.sg) and W. B. G. (wbgao@ntu.edu.sg) upon request.

Code availability

All the technical details for implementing the simulation are provided in the Supplementary Information. Codes are available from the corresponding authors upon request.

References

  1. Crassous, J. et al. Materials for chiral light control. Nat. Rev. Mater. 8, 365–371 (2023).

    Google Scholar 

  2. Hefern, M. C., Matosziuk, L. M. & Meade, T. J. Lanthanide probes for bioresponsive imaging. Chem. Rev. 114, 4496–4539 (2014).

    Google Scholar 

  3. Ishii, A. & Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv. 6, eabd3274 (2020).

    Google Scholar 

  4. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).

    Google Scholar 

  5. Yang, Y., Da Costa, R. C., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photon. 7, 634–638 (2013).

    Google Scholar 

  6. Wan, L. et al. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends. Nat. Photon. 17, 649–655 (2023).

    Google Scholar 

  7. Schulz, M. et al. Chiral excitonic organic photodiodes for direct detection of circular polarized light. Adv. Funct. Mater. 29, 1900684 (2019).

    Google Scholar 

  8. Shi, W. et al. Fullerene desymmetrization as a means to achieve single-enantiomer electron acceptors with maximized chiroptical responsiveness. Adv. Mater. 33, 2004115 (2021).

    Google Scholar 

  9. Ward, M. D. et al. Highly selective high-speed circularly polarized photodiodes based on π-conjugated polymers. Adv. Opt. Mater. 10, 2101044 (2021).

    Google Scholar 

  10. Kim, N. Y. et al. Chiroptical-conjugated polymer/chiral small molecule hybrid thin films for circularly polarized light-detecting heterojunction devices. Adv. Funct. Mater. 29, 1808668 (2019).

    Google Scholar 

  11. Li, D. et al. Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection. Angew. Chem. Int. Ed. 60, 8415–8418 (2021).

    Google Scholar 

  12. Wang, L. et al. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 59, 6442–6450 (2020).

    Google Scholar 

  13. Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    Google Scholar 

  14. Li, L. et al. Monolithic full-Stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene-silicon photodetector. ACS Nano 14, 16634–16642 (2020).

    Google Scholar 

  15. Jiang, H. et al. Metasurface-enabled broadband multidimensional photodetectors. Nat. Commun. 15, 8347 (2024).

    Google Scholar 

  16. Jiang, H. et al. Chiral light detection with centrosymmetric-metamaterial-assisted valleytronics. Nat. Mater. 24, 861–867 (2025).

    Google Scholar 

  17. Zhang, G. et al. High discrimination ratio, broadband circularly polarized light photodetector using dielectric achiral nanostructures. Light.: Sci. Appl. 13, 275 (2024).

    Google Scholar 

  18. Dai, M. et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nat. Commun. 13, 4560 (2022).

    Google Scholar 

  19. Eswaraiah, V., Zeng, Q., Long, Y. & Liu, Z. Black phosphorus nanosheets: synthesis, characterization and applications. Small 12, 3480–3502 (2016).

    Google Scholar 

  20. Zhu, X. et al. 2D black phosphorus infrared photodetectors. Laser Photonics Rev. 19, 2400703 (2025).

    Google Scholar 

  21. Wang, F. et al. Multidimensional detection enabled by twisted black arsenic–phosphorus homojunctions. Nat. Nanotech. 19, 455–462 (2024).

    Google Scholar 

  22. Chen, X. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017).

    Google Scholar 

  23. Bullock, J. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 12, 601–607 (2018).

    Google Scholar 

  24. Tian, R. et al. Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity. Light.: Sci. Appl. 11, 101 (2022).

    Google Scholar 

  25. Wu, S. et al. Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains. Nat. Commun. 13, 3198 (2022).

    Google Scholar 

  26. Jiao, H. et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv. 8, eabn1811 (2022).

    Google Scholar 

  27. Xiong, Y. et al. Twisted black phosphorus–based van der Waals stacks for fiber-integrated polarimeters. Sci. Adv. 8, eabo0375 (2022).

    Google Scholar 

  28. Han, Z., Wang, F., Sun, J., Wang, X. & Tang, Z. Recent advances in ultrathin chiral metasurfaces by twisted stacking. Adv. Mater. 35, 2206141 (2023).

    Google Scholar 

  29. Zhao, Y. et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 8, 14180 (2017).

    Google Scholar 

  30. Hu, H. et al. Tunable circular polarization responses of twisted black phosphorus metamaterials. Opt. Express 30, 47690–47700 (2022).

    Google Scholar 

  31. Wang, S.-Y. et al. Tunable optical rotation in twisted black phosphorus. J. Phys. Chem. Lett. 12, 4755–4761 (2021).

    Google Scholar 

  32. Wu, B.-Y., Shi, Z.-X., Wu, F., Wang, M.-J. & Wu, X.-H. Strong chirality in twisted bilayer α-MoO3. Chin. Phys. B 31, 044101 (2022).

    Google Scholar 

  33. Wan, L., Liu, Y., Fuchter, M. J. & Yan, B. Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital–momentum locking. Nat. Photon. 17, 193–199 (2023).

    Google Scholar 

  34. Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

    Google Scholar 

  35. Kim, D.-K. et al. P–N junction diode using plasma boron-doped black phosphorus for high-performance photovoltaic devices. ACS nano 13, 1683–1693 (2019).

    Google Scholar 

  36. Cai, Y., Zhang, G. & Zhang, Y.-W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014).

    Google Scholar 

  37. Lee, S. Y., Yun, W. S. & Lee, J. D. New method to determine the schottky barrier in few-layer black phosphorus metal contacts. ACS Appl. Mater. Interfaces 9, 7873–7877 (2017).

    Google Scholar 

  38. Liu, S. et al. Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C. 3, 10974–10980 (2015).

    Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Google Scholar 

  41. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  43. Wang, Y. et al. Fast uncooled mid-wavelength infrared photodetectors with heterostructures of van der Waals on epitaxial HgCdTe. Adv. Mater. 34, e2107772 (2022).

    Google Scholar 

  44. Peng, M. et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 7, eabf7358 (2021).

    Google Scholar 

  45. Jiang, H. et al. Synergistic-potential engineering enables high-efficiency graphene photodetectors for near- to mid-infrared light. Nat. Commun. 15, 1225 (2024).

    Google Scholar 

  46. Edgar, M. P., Gibson, G. M. & Padgett, M. J. Principles and prospects for single-pixel imaging. Nat. Photonics 13, 13–20 (2019).

    Google Scholar 

  47. Cheng, Z., Zhao, T. & Zeng, H. 2D material-based photodetectors for infrared imaging. Small Sci. 2, 2100051 (2022).

    Google Scholar 

  48. Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9, 247–252 (2015).

    Google Scholar 

Download references

Acknowledgments

This work is supported by ASTAR (M21K2c0116, M24M8b0004), NTU Tamesek Lab (TLSP24-04), Singapore National Research Foundation (NRF-CRP30-2023-0003, NRF-CRP31-0001, NRF2023-ITC004-001 and NRF-MSG-2023-0002) and Singapore Ministry of Education Tier 2 Grant (MOE-T2EP50221-0005, MOE-T2EP50222-0018). X.-L.Y. is supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515011852). X. C. is supported by the National Natural Science Foundation of China (62275117) and Shenzhen Excellent Youth Program (RCYX20221008092900001). X. W. is supported by the National Key Research and Development Program of China (2024YFE0211900). X.-L.Y. is supported by the Shenzhen Natural Science Foundation (Grant No. JCYJ20250604174400001) and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515011852).

Author information

Author notes
  1. These authors contributed equally: Hao Jiang, Liheng An.

Authors and Affiliations

  1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore

    Hao Jiang, Liheng An, Yan Zhang, Xuran Dai, Yuzhe Yang & Weibo Gao

  2. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore

    Hao Jiang, Liheng An, Yan Zhang, Xuran Dai, Yuzhe Yang, Ruihua He & Weibo Gao

  3. Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China

    Xiaolong Chen

  4. School of Electronic Science & Engineering, Southeast University, Nanjing, 211189, China

    Guoqiang Xu

  5. Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore

    Jintao Fu & Cheng-Wei Qiu

  6. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China

    Jintao Fu & Xingzhan Wei

  7. School of Science, Sun Yat-sen University, Shenzhen, 518107, China

    Xiang-Long Yu

  8. Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore

    Weibo Gao

  9. Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, Singapore

    Weibo Gao

Authors
  1. Hao Jiang
    View author publications

    Search author on:PubMed Google Scholar

  2. Liheng An
    View author publications

    Search author on:PubMed Google Scholar

  3. Xiaolong Chen
    View author publications

    Search author on:PubMed Google Scholar

  4. Guoqiang Xu
    View author publications

    Search author on:PubMed Google Scholar

  5. Yan Zhang
    View author publications

    Search author on:PubMed Google Scholar

  6. Jintao Fu
    View author publications

    Search author on:PubMed Google Scholar

  7. Xuran Dai
    View author publications

    Search author on:PubMed Google Scholar

  8. Yuzhe Yang
    View author publications

    Search author on:PubMed Google Scholar

  9. Ruihua He
    View author publications

    Search author on:PubMed Google Scholar

  10. Xingzhan Wei
    View author publications

    Search author on:PubMed Google Scholar

  11. Xiang-Long Yu
    View author publications

    Search author on:PubMed Google Scholar

  12. Cheng-Wei Qiu
    View author publications

    Search author on:PubMed Google Scholar

  13. Weibo Gao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H.J., W-b.G. and C.-W.Q. conceived the project. H.J., L.A., Y.Z., Y.Y., X.D., and J.F. performed the measurements. H.J. and L.A. fabricated the devices. H.J. analyzed the data. H.J., X.C., and X.Y. performed the theoretical analysis. H.J., X.Y., C.-W.Q. and W.-b.G. wrote the manuscript. C.-W.Q. and W-b.G. supervised the project. All the authors, including R.H., G.X., L.A., X.W., and X.C. contributed to the discussion of the results.

Corresponding authors

Correspondence to Xiaolong Chen, Xiang-Long Yu, Cheng-Wei Qiu or Weibo Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Yufeng Hao, Xiaomu Wang, and the other anonymous reviewer for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., An, L., Chen, X. et al. Twist-stacked black phosphorus for wide-spectral chiral photodetection. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68531-z

Download citation

  • Received: 22 July 2025

  • Accepted: 09 January 2026

  • Published: 17 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68531-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing