Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Multidimensional helical dichroism from a chiral molecular nanoassembly
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 January 2026

Multidimensional helical dichroism from a chiral molecular nanoassembly

  • Yusheng Jin1,
  • Xinghao Wang1,
  • Zhijie Xia1,
  • Xiaoxu Rao1,
  • Xiaomei Chen  ORCID: orcid.org/0000-0002-3350-30722,
  • Kaixuan Li2,
  • Yucheng Jiang  ORCID: orcid.org/0000-0002-3064-40992,3,
  • Jiaru Chu1,
  • Dong Wu  ORCID: orcid.org/0000-0003-0623-15151,
  • Cheng-Wei Qiu  ORCID: orcid.org/0000-0002-6605-500X2,4,5 &
  • …
  • Jincheng Ni  ORCID: orcid.org/0000-0001-9308-45111,6 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Circular dichroism
  • Molecular self-assembly
  • Self-assembly

Abstract

Detecting the chirality of molecules is of great importance in optics, biomedicine, and materials science. In chiroptical spectroscopy, it’s crucial to achieve strong chiroptical signals with a minimal number of chiral molecules. The molecular chiroptical signals, however, are typically weak for chiral molecular sensing in conventional circular dichroism using photonic spin angular momentum, even in the presence of a large number of chiral molecules (micromoles to millimoles). Here, by involving chiral light-matter interaction with photonic orbital angular momentum, we demonstrate strong chiroptical responses that reflect the molecular chirality in a single chiral nanoassembly. We experimentally present the helical dichroism spectra of chiral nanoassemblies synthesized from L/D-cystines, consistent with electromagnetic simulations. The asymmetry factors in the fundamental wavelength and photoluminescence emission reach values of 0.53 and 1.18, respectively, exceeding those observed in the circular dichroism mechanism. To improve the dimensions of helical dichroism spectroscopy, we analyze helical dichroism in wavelength domain, polarization domain, and momentum space. Our findings not only expand the methods for trace chiral molecular sensing but also provide insights into chiral light-matter interactions.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Other source data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Deng, M., Yu, J. & Blackmond, D. G. Symmetry breaking and chiral amplification in prebiotic ligation reactions. Nature 626, 1019–1024 (2024).

    Google Scholar 

  2. Ahn, H.-Y. et al. Bioinspired toolkit based on intermolecular encoder toward evolutionary 4D chiral plasmonic materials. Acc. Chem. Res. 52, 2768–2783 (2019).

    Google Scholar 

  3. Ugras, T. J. et al. Transforming achiral semiconductors into chiral domains with exceptional circular dichroism. Science 387, eado7201 (2025).

    Google Scholar 

  4. Lu, J. et al. Nano-achiral complex composites for extreme polarization optics. Nature 630, 860–865 (2024).

    Google Scholar 

  5. Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).

    Google Scholar 

  6. Ozcelik, A., Pereira-Cameselle, R., Poklar Ulrih, N., Petrovic, A. G. & Alonso-Gómez, J. L. Chiroptical sensing: a conceptual introduction. Sensors 20, 974 (2020).

    Google Scholar 

  7. Rhee, H. et al. Femtosecond characterization of vibrational optical activity of chiral molecules. Nature 458, 310–313 (2009).

    Google Scholar 

  8. Qian, H.-L., Xu, S.-T. & Yan, X.-P. Recent advances in separation and analysis of chiral compounds. Anal. Chem. 95, 304–318 (2023).

    Google Scholar 

  9. Formen, J. S. S. K., Howard, J. R., Anslyn, E. V. & Wolf, C. Circular dichroism sensing: strategies and applications. Angew. Chem. Int. Ed. 63, e202400767 (2024).

    Google Scholar 

  10. Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783–787 (2010).

    Google Scholar 

  11. Govorov, A. O., Fan, Z., Hernandez, P., Slocik, J. M. & Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374–1382 (2010).

    Google Scholar 

  12. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Google Scholar 

  13. Ma, W. et al. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013).

    Google Scholar 

  14. Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    Google Scholar 

  15. Zhao, Y. et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 8, 14180 (2017).

    Google Scholar 

  16. Yeom, J. et al. Chiromagnetic nanoparticles and gels. Science 359, 309–314 (2018).

    Google Scholar 

  17. Yoo, S. & Park, Q.-H. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics 8, 249–261 (2019).

    Google Scholar 

  18. Zhang, Q. et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 365, 1475–1478 (2019).

    Google Scholar 

  19. García-Guirado, J., Svedendahl, M., Puigdollers, J. & Quidant, R. Enhanced chiral sensing with dielectric nanoresonators. Nano Lett. 20, 585–591 (2020).

    Google Scholar 

  20. Solomon, M. L. et al. Nanophotonic platforms for chiral sensing and separation. Acc. Chem. Res. 53, 588–598 (2020).

    Google Scholar 

  21. González-Rubio, G. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472–1477 (2020).

    Google Scholar 

  22. Warning, L. A. et al. Nanophotonic approaches for chirality sensing. ACS Nano 15, 15538–15566 (2021).

    Google Scholar 

  23. Cho, N. H. et al. Bioinspired chiral inorganic nanomaterials. Nat. Rev. Bioeng. 1, 88–106 (2023).

    Google Scholar 

  24. Zhang, C. et al. Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections. Nat. Commun. 15, 2 (2024).

    Google Scholar 

  25. Orme, C. A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 (2001).

    Google Scholar 

  26. Han, B., Zhu, Z., Li, Z., Zhang, W. & Tang, Z. Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies. J. Am. Chem. Soc. 136, 16104–16107 (2014).

    Google Scholar 

  27. Feng, W. et al. Assembly of mesoscale helices with near-unity enantiomeric excess and light–matter interactions for chiral semiconductors. Sci. Adv. 3, e1601159 (2017).

    Google Scholar 

  28. Lee, H.-E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018).

    Google Scholar 

  29. Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020).

    Google Scholar 

  30. Ohnoutek, L. et al. Third-harmonic Mie scattering from semiconductor nanohelices. Nat. Photon. 16, 126–133 (2022).

    Google Scholar 

  31. Kumar, P. et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature 615, 418–424 (2023).

    Google Scholar 

  32. Kim, R. M. et al. Enantioselective sensing by collective circular dichroism. Nature 612, 470–476 (2022).

    Google Scholar 

  33. Xu, L. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 601, 366–373 (2022).

    Google Scholar 

  34. Lu, J. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 371, 1368–1374 (2021).

    Google Scholar 

  35. Babiker, M., Bennett, C. R., Andrews, D. L. & Dávila Romero, L. C. Orbital angular momentum exchange in the interaction of twisted light with molecules. Phys. Rev. Lett. 89, 143601 (2002).

    Google Scholar 

  36. Brullot, W., Vanbel, M. K., Swusten, T. & Verbiest, T. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2, e1501349 (2016).

    Google Scholar 

  37. Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).

    Google Scholar 

  38. Ni, J. et al. Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proc. Natl. Acad. Sci. USA 118, e2020055118 (2021).

    Google Scholar 

  39. Ni, J. et al. Giant helical dichroism of single chiral nanostructures with photonic orbital angular momentum. ACS Nano 15, 2893–2900 (2021).

    Google Scholar 

  40. Jain, A. et al. Selective and tunable absorption of twisted light in achiral and chiral plasmonic metasurfaces. ACS Nano 18, 27383–27392 (2024).

    Google Scholar 

  41. Ni, J. et al. Unidirectional unpolarized luminescence emission via vortex excitation. Nat. Photon. 17, 601–606 (2023).

    Google Scholar 

  42. Cheeseman, L. & Forbes, K. A. Nonlinear vortex dichroism in chiral molecules. Adv. Opt. Mater. 13, 2402151 (2024).

    Google Scholar 

  43. Cheng, M., Jiang, W., Guo, L., Li, J. & Forbes, A. Metrology with a twist: probing and sensing with vortex light. Light Sci. Appl. 14, 4 (2025).

    Google Scholar 

  44. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Google Scholar 

  45. Van Veenendaal, M. & McNulty, I. Prediction of strong dichroism induced by X rays carrying orbital momentum. Phys. Rev. Lett. 98, 157401 (2007).

    Google Scholar 

  46. Ye, L., Rouxel, J. R., Asban, S., Rösner, B. & Mukamel, S. Probing molecular chirality by orbital-angular-momentum-carrying X-ray pulses. J. Chem. Theory Comput. 15, 4180–4186 (2019).

    Google Scholar 

  47. Bégin, J.-L. et al. Nonlinear helical dichroism in chiral and achiral molecules. Nat. Photon. 17, 82–88 (2023).

    Google Scholar 

  48. Rouxel, J. R. et al. Hard X-ray helical dichroism of disordered molecular media. Nat. Photon. 16, 570–574 (2022).

    Google Scholar 

  49. Barnett, S. M. Optical angular-momentum flux. J. Opt. B 4, S7 (2002).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62375253 and 62325507), National Key R&D Program of China (2021YFF0502700 and 2023YFF0613600). C.-W.Q. acknowledged the financial support by the Ministry of Education, Republic of Singapore (Grant Nos. A-8002152-00-00 and A-8002458-00-00), and the Competitive Research Program Award (NRF-CRP26-2021-0004 and NRF-CRP30-2023-0003) from the National Research Foundation, Prime Minister’s Office, Singapore. C.W.Q. also acknowledged the support from the National University of Singapore Suzhou Research Institute via Grant No. R-2023-S-011. We acknowledge the Experimental Center of Engineering and Material Sciences at USTC for the fabrication and measurement of samples. This work was partly carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

  1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China

    Yusheng Jin, Xinghao Wang, Zhijie Xia, Xiaoxu Rao, Jiaru Chu, Dong Wu & Jincheng Ni

  2. Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore

    Xiaomei Chen, Kaixuan Li, Yucheng Jiang & Cheng-Wei Qiu

  3. Jiangsu Key Laboratory of Intelligent Optoelectronic Devices and Chips, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China

    Yucheng Jiang

  4. National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, China

    Cheng-Wei Qiu

  5. Department of Physics, National University of Singapore, Singapore, Singapore

    Cheng-Wei Qiu

  6. State Key Laboratory of Opto-Electronic Information Acquisition and Protection Technology, Anhui University, Hefei, Anhui, China

    Jincheng Ni

Authors
  1. Yusheng Jin
    View author publications

    Search author on:PubMed Google Scholar

  2. Xinghao Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Zhijie Xia
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiaoxu Rao
    View author publications

    Search author on:PubMed Google Scholar

  5. Xiaomei Chen
    View author publications

    Search author on:PubMed Google Scholar

  6. Kaixuan Li
    View author publications

    Search author on:PubMed Google Scholar

  7. Yucheng Jiang
    View author publications

    Search author on:PubMed Google Scholar

  8. Jiaru Chu
    View author publications

    Search author on:PubMed Google Scholar

  9. Dong Wu
    View author publications

    Search author on:PubMed Google Scholar

  10. Cheng-Wei Qiu
    View author publications

    Search author on:PubMed Google Scholar

  11. Jincheng Ni
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y. Jin and J.N. proposed the idea and conceived the experiment. Y. Jin, X.W., and Z.X. performed the experiments. Y. Jin, J.N., and X.R. performed the data analysis. Y. Jin and J.N. performed the numerical simulations. Y. Jin, J.N., and C.W.Q. wrote the manuscript. X.C., K.L., Y. Jiang, and J.C. revised the manuscript. J.N., D.W., and C.W.Q. supervised the project.

Corresponding authors

Correspondence to Dong Wu, Cheng-Wei Qiu or Jincheng Ni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Ravi Bhardwaj and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Wang, X., Xia, Z. et al. Multidimensional helical dichroism from a chiral molecular nanoassembly. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68540-y

Download citation

  • Received: 11 November 2025

  • Accepted: 08 January 2026

  • Published: 29 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68540-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing