Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Dynamic signature of activity-stability tradeoff in lactamase evolution
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Dynamic signature of activity-stability tradeoff in lactamase evolution

  • Ernesto Arcia1 na1,
  • Dimitra Keramisanou1 na1,
  • Lian M. C. Jacobs2,
  • McKenna Parker1,
  • Julián M. Delgado  ORCID: orcid.org/0000-0002-2304-86433,
  • Vasantha Kumar MV1,
  • Sameer Varma  ORCID: orcid.org/0000-0002-7827-56323,
  • Rinat Abzalimov4,
  • Yu Chen  ORCID: orcid.org/0000-0002-5115-36002 &
  • …
  • Ioannis Gelis  ORCID: orcid.org/0000-0001-8099-003X1 

Nature Communications , Article number:  (2026) Cite this article

  • 2297 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biophysical chemistry
  • Molecular biophysics
  • Molecular evolution
  • NMR spectroscopy

Abstract

Our ability to understand protein evolution hinges on understanding how evolutionary landscapes are shaped at the fundamental protein level. Using TEM-1 β-lactamase we show that molecular traits related to the statistical ensemble nature of protein structure contribute to broader substrate specificity, active site-scaffold communication, and the selection of stabilizing substitutions. During the evolution of cefotaxime resistance, the initial mutation reorganizes the active site, introducing a new function conformation. Secondary substitutions improve catalytic efficiency by redistributing the ensemble and restoring a significant population of the original conformation, rather than by stabilizing the new conformation. Stability defects associated with initial mutations are not evenly disseminated but are clustered at specific distal scaffold elements. The capacity of mutants to independently modulate the populations of individual active site walls and scaffold regions through narrow residue networks, produces conformational epistasis and a combinatorial set of cefotaximase states, which enables local compensation of scaffold defects.

Similar content being viewed by others

Hinge-shift mechanism as a protein design principle for the evolution of β-lactamases from substrate promiscuity to specificity

Article Open access 25 March 2021

Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase

Article Open access 23 February 2024

Enriching productive mutational paths accelerates enzyme evolution

Article Open access 11 September 2024

Data availability

The HDX-MS data generated in this study have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository under accession code PXD069558. Previously published BMRB codes utilized: BMRB 7236. Source data are provided in the source data file. Materials used are available from the corresponding author.

References

  1. Salverda, M. L., De Visser, J. A. & Barlow, M. Natural evolution of TEM-1 beta-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 34, 1015–1036 (2010).

    Google Scholar 

  2. Goldsmith, M. & Tawfik, D. S. Enzyme engineering: reaching the maximal catalytic efficiency peak. Curr. Opin. Struct. Biol. 47, 140–150 (2017).

    Google Scholar 

  3. Kaltenbach, M. & Tokuriki, N. Dynamics and constraints of enzyme evolution. J. Exp. Zool. B Mol. Dev. Evol. 322, 468–487 (2014).

    Google Scholar 

  4. Miton, C. M. & Tokuriki, N. How mutational epistasis impairs predictability in protein evolution and design. Protein Sci. 25, 1260–1272 (2016).

    Google Scholar 

  5. Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput Biol. 4, e1000002 (2008).

    Google Scholar 

  6. Wang, X., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320, 85–95 (2002).

    Google Scholar 

  7. Toth-Petroczy, A. & Tawfik, D. S. The robustness and innovability of protein folds. Curr. Opin. Struct. Biol. 26, 131–138 (2014).

    Google Scholar 

  8. Aharoni, A. et al. The evolvability of promiscuous protein functions. Nat. Genet 37, 73–76 (2005).

    Google Scholar 

  9. Johansson, K. E. & Lindorff-Larsen, K. Structural heterogeneity and dynamics in protein evolution and design. Curr. Opin. Struct. Biol. 48, 157–163 (2018).

    Google Scholar 

  10. Khersonsky, O., Roodveldt, C. & Tawfik, D. S. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr. Opin. Chem. Biol. 10, 498–508 (2006).

    Google Scholar 

  11. Matsumura, I. & Ellington, A. D. In vitro evolution of beta-glucuronidase into a beta-galactosidase proceeds through non-specific intermediates. J. Mol. Biol. 305, 331–339 (2001).

    Google Scholar 

  12. Pabis, A., Risso, V. A., Sanchez-Ruiz, J. M. & Kamerlin, S. C. Cooperativity and flexibility in enzyme evolution. Curr. Opin. Struct. Biol. 48, 83–92 (2018).

    Google Scholar 

  13. Petrovic, D., Risso, V. A., Kamerlin, S. C. L. & Sanchez-Ruiz, J. M. Conformational dynamics and enzyme evolution. J. R. Soc. Interface. https://doi.org/10.1098/rsif.2018.0330 (2018).

  14. Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    Google Scholar 

  15. Wouters, M. A., Liu, K., Riek, P. & Husain, A. A despecialization step underlying evolution of a family of serine proteases. Mol. Cell 12, 343–354 (2003).

    Google Scholar 

  16. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103, 5869–5874 (2006).

    Google Scholar 

  17. Guerois, R., Nielsen, J. E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002).

    Google Scholar 

  18. Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res 33, W382–W388 (2005).

    Google Scholar 

  19. Tokuriki, N., Stricher, F., Schymkowitz, J., Serrano, L. & Tawfik, D. S. The stability effects of protein mutations appear to be universally distributed. J. Mol. Biol. 369, 1318–1332 (2007).

    Google Scholar 

  20. Axe, D. D., Foster, N. W. & Fersht, A. R. A search for single substitutions that eliminate enzymatic function in a bacterial ribonuclease. Biochemistry 37, 7157–7166 (1998).

    Google Scholar 

  21. Drummond, D. A., Silberg, J. J., Meyer, M. M., Wilke, C. O. & Arnold, F. H. On the conservative nature of intragenic recombination. Proc. Natl. Acad. Sci. USA 102, 5380–5385 (2005).

    Google Scholar 

  22. Guo, H. H., Choe, J. & Loeb, L. A. Protein tolerance to random amino acid change. Proc. Natl. Acad. Sci. USA 101, 9205–9210 (2004).

    Google Scholar 

  23. Rennell, D., Bouvier, S. E., Hardy, L. W. & Poteete, A. R. Systematic mutation of bacteriophage T4 lysozyme. J. Mol. Biol. 222, 67–88 (1991).

    Google Scholar 

  24. Shafikhani, S., Siegel, R. A., Ferrari, E. & Schellenberger, V. Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization. Biotechniques 23, 304–310 (1997).

    Google Scholar 

  25. Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    Google Scholar 

  26. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

    Google Scholar 

  27. Bloom, J. D., Arnold, F. H. & Wilke, C. O. Breaking proteins with mutations: threads and thresholds in evolution. Mol. Syst. Biol. 3, 76 (2007).

    Google Scholar 

  28. Bloom, J. D. et al. Thermodynamic prediction of protein neutrality. Proc. Natl. Acad. Sci. USA 102, 606–611 (2005).

    Google Scholar 

  29. Dellus-Gur, E., Toth-Petroczy, A., Elias, M. & Tawfik, D. S. What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs. J. Mol. Biol. 425, 2609–2621 (2013).

    Google Scholar 

  30. Bershtein, S., Goldin, K. & Tawfik, D. S. Intense neutral drifts yield robust and evolvable consensus proteins. J. Mol. Biol. 379, 1029–1044 (2008).

    Google Scholar 

  31. Gaucher, E. A., Govindarajan, S. & Ganesh, O. K. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451, 704–707 (2008).

    Google Scholar 

  32. Godoy-Ruiz, R., Perez-Jimenez, R., Ibarra-Molero, B. & Sanchez-Ruiz, J. M. A stability pattern of protein hydrophobic mutations that reflects evolutionary structural optimization. Biophys. J. 89, 3320–3331 (2005).

    Google Scholar 

  33. Bornberg-Bauer, E. & Chan, H. S. Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space. Proc. Natl. Acad. Sci. USA 96, 10689–10694 (1999).

    Google Scholar 

  34. Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. Protein Sci. 25, 1204–1218 (2016).

    Google Scholar 

  35. Knies, J. L., Cai, F. & Weinreich, D. M. Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 beta-Lactamase. Mol. Biol. Evol. 34, 1040–1054 (2017).

    Google Scholar 

  36. Kather, I., Jakob, R. P., Dobbek, H. & Schmid, F. X. Increased folding stability of TEM-1 beta-lactamase by in vitro selection. J. Mol. Biol. 383, 238–251 (2008).

    Google Scholar 

  37. Lim, S. A., Hart, K. M., Harms, M. J. & Marqusee, S. Evolutionary trend toward kinetic stability in the folding trajectory of RNases H. Proc. Natl. Acad. Sci. USA 113, 13045–13050 (2016).

    Google Scholar 

  38. Romero-Romero, M. L. et al. Selection for protein kinetic stability connects denaturation temperatures to organismal temperatures and provides clues to archaean life. PLoS One 11, e0156657 (2016).

    Google Scholar 

  39. Yu, H. & Dalby, P. A. Exploiting correlated molecular-dynamics networks to counteract enzyme activity-stability trade-off. Proc. Natl. Acad. Sci. USA 115, E12192–E12200 (2018).

    Google Scholar 

  40. Yu, H. & Dalby, P. A. Coupled molecular dynamics mediate long- and short-range epistasis between mutations that affect stability and aggregation kinetics. Proc. Natl. Acad. Sci. USA 115, E11043–E11052 (2018).

    Google Scholar 

  41. Ose, N. J., Campitelli, P., Patel, R., Kumar, S. & Ozkan, S. B. Protein dynamics provide mechanistic insights about epistasis among common missense polymorphisms. Biophys. J. 122, 2938–2947 (2023).

    Google Scholar 

  42. Ambler, R. P. et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 276, 269–270 (1991).

    Google Scholar 

  43. Salverda, M. L. et al. Initial mutations direct alternative pathways of protein evolution. PLoS Genet 7, e1001321 (2011).

    Google Scholar 

  44. Palzkill, T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC beta-lactamases. Front Mol. Biosci. 5, 16 (2018).

    Google Scholar 

  45. Orencia, M. C., Yoon, J. S., Ness, J. E., Stemmer, W. P. & Stevens, R. C. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nat. Struct. Biol. 8, 238–242 (2001).

    Google Scholar 

  46. Dellus-Gur, E. et al. Negative epistasis and evolvability in TEM-1 beta-lactamase-the thin line between an enzyme’s conformational freedom and disorder. J. Mol. Biol. 427, 2396–2409 (2015).

    Google Scholar 

  47. Docquier, J. D., Benvenuti, M., Calderone, V., Rossolini, G. M. & Mangani, S. Structure of the extended-spectrum beta-lactamase TEM-72 inhibited by citrate. Acta Crystallogr Sect. F. Struct. Biol. Cryst. Commun. 67, 303–306 (2011).

    Google Scholar 

  48. Shimamura, T. et al. Acyl-intermediate structures of the extended-spectrum class A beta-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin. J. Biol. Chem. 277, 46601–46608 (2002).

    Google Scholar 

  49. Doucet, N., Savard, P. Y., Pelletier, J. N. & Gagne, S. M. NMR investigation of Tyr105 mutants in TEM-1 beta-lactamase: dynamics are correlated with function. J. Biol. Chem. 282, 21448–21459 (2007).

    Google Scholar 

  50. Savard, P. Y. & Gagne, S. M. Backbone dynamics of TEM-1 determined by NMR: evidence for a highly ordered protein. Biochemistry 45, 11414–11424 (2006).

    Google Scholar 

  51. Clouthier, C. M. et al. Chimeric beta-lactamases: global conservation of parental function and fast time-scale dynamics with increased slow motions. PLoS One 7, e52283 (2012).

    Google Scholar 

  52. Morin, S. & Gagne, S. M. NMR dynamics of PSE-4 beta-lactamase: an interplay of ps-ns order and mus-ms motions in the active site. Biophys. J. 96, 4681–4691 (2009).

    Google Scholar 

  53. Sakhrani, V. V. et al. Toho-1 beta-lactamase: backbone chemical shift assignments and changes in dynamics upon binding with avibactam. J. Biomol. NMR 75, 303–318 (2021).

    Google Scholar 

  54. Rossi, M. A., Palzkill, T., Almeida, F. C. L. & Vila, A. J. Slow Protein Dynamics Elicits New Enzymatic Functions by Means of Epistatic Interactions. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msac194 (2022).

  55. Elings, W. et al. Two beta-lactamase variants with reduced clavulanic acid inhibition display different millisecond dynamics. Antimicrob. Agents Chemother. 65, e0262820 (2021).

    Google Scholar 

  56. Huang, W., Petrosino, J., Hirsch, M., Shenkin, P. S. & Palzkill, T. Amino acid sequence determinants of beta-lactamase structure and activity. J. Mol. Biol. 258, 688–703 (1996).

    Google Scholar 

  57. Gobeil, S. M. C. et al. Maintenance of native-like protein dynamics may not be required for engineering functional proteins. Chem. Biol. 21, 1330–1340 (2014).

    Google Scholar 

  58. Gobeil, S. M. C. et al. The structural dynamics of engineered beta-lactamases vary broadly on three timescales yet sustain native function. Sci. Rep. 9, 6656 (2019).

    Google Scholar 

  59. Stemmer, W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Google Scholar 

  60. Hall, B. G. Predicting evolution by in vitro evolution requires determining evolutionary pathways. Antimicrob. Agents Chemother. 46, 3035–3038 (2002).

    Google Scholar 

  61. Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Google Scholar 

  62. Huang, W. & Palzkill, T. A natural polymorphism in beta-lactamase is a global suppressor. Proc. Natl. Acad. Sci. USA 94, 8801–8806 (1997).

    Google Scholar 

  63. Sideraki, V., Huang, W., Palzkill, T. & Gilbert, H. F. A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc. Natl. Acad. Sci. USA 98, 283–288 (2001).

    Google Scholar 

  64. Steinberg, B. & Ostermeier, M. Environmental changes bridge evolutionary valleys. Sci. Adv. 2, e1500921 (2016).

    Google Scholar 

  65. Lee, S. et al. Natural and synthetic suppressor mutations defy stability-activity tradeoffs. Biochemistry 61, 398–407 (2022).

    Google Scholar 

  66. Horn, J. R. & Shoichet, B. K. Allosteric inhibition through core disruption. J. Mol. Biol. 336, 1283–1291 (2004).

    Google Scholar 

  67. Bowman, G. R., Bolin, E. R., Hart, K. M., Maguire, B. C. & Marqusee, S. Discovery of multiple hidden allosteric sites by combining Markov state models and experiments. Proc. Natl. Acad. Sci. USA 112, 2734–2739 (2015).

    Google Scholar 

  68. Bowman, G. R. & Geissler, P. L. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc. Natl. Acad. Sci. USA 109, 11681–11686 (2012).

    Google Scholar 

  69. Meneksedag, D., Dogan, A., Kanlikilicer, P. & Ozkirimli, E. Communication between the active site and the allosteric site in class A beta-lactamases. Comput Biol. Chem. 43, 1–10 (2013).

    Google Scholar 

  70. Porter, J. R. et al. Cooperative changes in solvent exposure identify cryptic pockets, switches, and allosteric coupling. Biophys. J. 116, 818–830 (2019).

    Google Scholar 

  71. Beadle, B. M. & Shoichet, B. K. Structural bases of stability-function tradeoffs in enzymes. J. Mol. Biol. 321, 285–296 (2002).

    Google Scholar 

  72. Brown, K. M. et al. Compensatory mutations restore fitness during the evolution of dihydrofolate reductase. Mol. Biol. Evol. 27, 2682–2690 (2010).

    Google Scholar 

  73. Rodrigues, J. V. et al. Biophysical principles predict fitness landscapes of drug resistance. Proc. Natl. Acad. Sci. USA 113, E1470–E1478 (2016).

    Google Scholar 

  74. Chang, M. W. & Torbett, B. E. Accessory mutations maintain stability in drug-resistant HIV-1 protease. J. Mol. Biol. 410, 756–760 (2011).

    Google Scholar 

  75. Bloom, J. D., Gong, L. I. & Baltimore, D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328, 1272–1275 (2010).

    Google Scholar 

  76. Nezhad, N. G. et al. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification. Int J. Biol. Macromol. 232, 123440 (2023).

    Google Scholar 

  77. Teufl, M., Zajc, C. U. & Traxlmayr, M. W. Engineering strategies to overcome the stability-function trade-off in proteins. ACS Synth. Biol. 11, 1030–1039 (2022).

    Google Scholar 

  78. Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).

    Google Scholar 

  79. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet 16, 379–394 (2015).

    Google Scholar 

  80. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Google Scholar 

  81. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Google Scholar 

  82. Luque, I., Leavitt, S. A. & Freire, E. The linkage between protein folding and functional cooperativity: two sides of the same coin? Annu Rev. Biophys. Biomol. Struct. 31, 235–256 (2002).

    Google Scholar 

  83. Hilser, V. J., Dowdy, D., Oas, T. G. & Freire, E. The structural distribution of cooperative interactions in proteins: analysis of the native state ensemble. Proc. Natl. Acad. Sci. USA 95, 9903–9908 (1998).

    Google Scholar 

  84. Hilser, V. J. & Freire, E. Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J. Mol. Biol. 262, 756–772 (1996).

    Google Scholar 

  85. Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    Google Scholar 

  86. Corbella, M., Pinto, G. P. & Kamerlin, S. C. L. Loop dynamics and the evolution of enzyme activity. Nat. Rev. Chem. 7, 536–547 (2023).

    Google Scholar 

  87. Campbell, E. et al. The role of protein dynamics in the evolution of new enzyme function. Nat. Chem. Biol. 12, 944–950 (2016).

    Google Scholar 

  88. Biel, J. T., Thompson, M. C., Cunningham, C. N., Corn, J. E. & Fraser, J. S. Flexibility and design: conformational heterogeneity along the evolutionary trajectory of a redesigned ubiquitin. Structure 25, 739–749 e733 (2017).

    Google Scholar 

  89. Campitelli, P., Modi, T., Kumar, S. & Ozkan, S. B. The role of conformational dynamics and allostery in modulating protein evolution. Annu Rev. Biophys. 49, 267–288 (2020).

    Google Scholar 

  90. Gonzalez, M. M., Abriata, L. A., Tomatis, P. E. & Vila, A. J. Optimization of conformational dynamics in an epistatic evolutionary trajectory. Mol. Biol. Evol. 33, 1768–1776 (2016).

    Google Scholar 

  91. Jimenez-Oses, G. et al. The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat. Chem. Biol. 10, 431–436 (2014).

    Google Scholar 

  92. Risso, V. A. et al. De novo active sites for resurrected Precambrian enzymes. Nat. Commun. 8, 16113 (2017).

    Google Scholar 

  93. Saves, I. et al. Mass spectral kinetic study of acylation and deacylation during the hydrolysis of penicillins and cefotaxime by beta-lactamase TEM-1 and the G238S mutant. Biochemistry 34, 11660–11667 (1995).

    Google Scholar 

  94. Alejaldre, L. et al. Known evolutionary paths are accessible to engineered ss-lactamases having altered protein motions at the timescale of catalytic turnover. Front Mol. Biosci. 7, 599298 (2020).

    Google Scholar 

  95. Hart, K. M., Ho, C. M., Dutta, S., Gross, M. L. & Bowman, G. R. Modelling proteins’ hidden conformations to predict antibiotic resistance. Nat. Commun. 7, 12965, (2016).

    Google Scholar 

  96. Knoverek, C. R. et al. Opening of a cryptic pocket in beta-lactamase increases penicillinase activity. Proc Natl Acad Sci USA 118, https://doi.org/10.1073/pnas.2106473118 (2021).

  97. Freire, E. The propagation of binding interactions to remote sites in proteins: analysis of the binding of the monoclonal antibody D1.3 to lysozyme. Proc. Natl. Acad. Sci. USA 96, 10118–10122 (1999).

    Google Scholar 

  98. Lockless, S. W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999).

    Google Scholar 

  99. Liu, T., Whitten, S. T. & Hilser, V. J. Functional residues serve a dominant role in mediating the cooperativity of the protein ensemble. Proc. Natl. Acad. Sci. USA 104, 4347–4352 (2007).

    Google Scholar 

  100. Clarkson, M. W., Gilmore, S. A., Edgell, M. H. & Lee, A. L. Dynamic coupling and allosteric behavior in a nonallosteric protein. Biochemistry 45, 7693–7699 (2006).

    Google Scholar 

  101. Hilser, V. J., Wrabl, J. O. & Motlagh, H. N. Structural and energetic basis of allostery. Annu Rev. Biophys. 41, 585–609 (2012).

    Google Scholar 

  102. Popovych, N., Sun, S., Ebright, R. H. & Kalodimos, C. G. Dynamically driven protein allostery. Nat. Struct. Mol. Biol. 13, 831–838 (2006).

    Google Scholar 

  103. Chen, Y., Delmas, J., Sirot, J., Shoichet, B. & Bonnet, R. Atomic resolution structures of CTX-M beta-lactamases: extended spectrum activities from increased mobility and decreased stability. J. Mol. Biol. 348, 349–362 (2005).

    Google Scholar 

  104. Hecky, J. & Muller, K. M. Structural perturbation and compensation by directed evolution at physiological temperature leads to thermostabilization of beta-lactamase. Biochemistry 44, 12640–12654 (2005).

    Google Scholar 

  105. Vanhove, M., Raquet, X. & Frere, J. M. Investigation of the folding pathway of the TEM-1 beta-lactamase. Proteins 22, 110–118 (1995).

    Google Scholar 

  106. Lejeune, A., Pain, R. H., Charlier, P., Frere, J. M. & Matagne, A. TEM-1 beta-lactamase folds in a nonhierarchical manner with transient non-native interactions involving the C-terminal region. Biochemistry 47, 1186–1193 (2008).

    Google Scholar 

  107. Schoene, C., Fierer, J. O., Bennett, S. P. & Howarth, M. SpyTag/SpyCatcher cyclization confers resilience to boiling on a mesophilic enzyme. Angew. Chem. Int Ed. Engl. 53, 6101–6104 (2014).

    Google Scholar 

  108. Iwai, H. & Pluckthun, A. Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. 459, 166–172 (1999).

    Google Scholar 

  109. Gonzalez, L. J., Bahr, G., Gonzalez, M. M., Bonomo, R. A. & Vila, A. J. In-cell kinetic stability is an essential trait in metallo-beta-lactamase evolution. Nat. Chem. Biol. 19, 1116–1126 (2023).

    Google Scholar 

  110. Liu, Q., Xun, G. & Feng, Y. The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnol. Adv. 37, 530–537 (2019).

    Google Scholar 

  111. Long, D., Liu, M. & Yang, D. Accurately probing slow motions on millisecond timescales with a robust NMR relaxation experiment. J. Am. Chem. Soc. 130, 2432–2433 (2008).

    Google Scholar 

  112. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Google Scholar 

  113. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules .1. theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Google Scholar 

  114. d’Auvergne, E. J. & Gooley, P. R. Optimisation of NMR dynamic models II. a new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor. J. Biomol. NMR 40, 121–133 (2008).

    Google Scholar 

  115. d’Auvergne, E. J. & Gooley, P. R. Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces. J. Biomol. NMR 40, 107–119 (2008).

    Google Scholar 

  116. Akaike, H. New look at statistical-model identification. IEEE T Autom. Contr Ac19, 716–723 (1974).

    Google Scholar 

  117. d’Auvergne, E. J. & Gooley, P. R. The use of model selection in the model-free analysis of protein dynamics. J. Biomol. NMR 25, 25–39 (2003).

    Google Scholar 

  118. Luz, Z. & Meiboom, S. Nuclear Magnetic Resonance Study of Protolysis of Trimethylammonium Ion in Aqueous Solution - Order of Reaction with Respect to Solvent. J. Chem. Phys. 39, 366-& (1963).

    Google Scholar 

  119. Carver, J. P. & Richards, R. E. General 2-site solution for chemical exchange produced dependence of T2 upon Carr-Purcell pulse separation. J. Magn. Reson 6, 89-& (1972).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Youlin Xia (St. Jude Children’s Reseach Hospital) for providing the CPMG pulse sequences, Dr. Todd Rappe (Minnesota NMR Center) for assistance with the relaxation experiments and Sofia Gonzalez for assistance with sample preparations. NMR experiments were carried out at USF’s Florida Center of Excellence for Drug Discovery and Innovation and the Minnesota NMR Center. This work was supported by the US National Institutes of Health (GM115854 to I.G. and AI161762 to Y.C.).

Author information

Author notes
  1. These authors contributed equally: Ernesto Arcia, Dimitra Keramisanou.

Authors and Affiliations

  1. Department of Chemistry, University of South Florida, Tampa, FL, USA

    Ernesto Arcia, Dimitra Keramisanou, McKenna Parker, Vasantha Kumar MV & Ioannis Gelis

  2. Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA

    Lian M. C. Jacobs & Yu Chen

  3. Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA

    Julián M. Delgado & Sameer Varma

  4. Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA

    Rinat Abzalimov

Authors
  1. Ernesto Arcia
    View author publications

    Search author on:PubMed Google Scholar

  2. Dimitra Keramisanou
    View author publications

    Search author on:PubMed Google Scholar

  3. Lian M. C. Jacobs
    View author publications

    Search author on:PubMed Google Scholar

  4. McKenna Parker
    View author publications

    Search author on:PubMed Google Scholar

  5. Julián M. Delgado
    View author publications

    Search author on:PubMed Google Scholar

  6. Vasantha Kumar MV
    View author publications

    Search author on:PubMed Google Scholar

  7. Sameer Varma
    View author publications

    Search author on:PubMed Google Scholar

  8. Rinat Abzalimov
    View author publications

    Search author on:PubMed Google Scholar

  9. Yu Chen
    View author publications

    Search author on:PubMed Google Scholar

  10. Ioannis Gelis
    View author publications

    Search author on:PubMed Google Scholar

Contributions

E.A., D.K., Y.C. and I.G. designed research; E.A., D.K. and M.P. prepared samples; E.A., D.K., V.K. and J.M.D. acquired and analyzed NMR data; E.A., R.A. and I.G. analyzed HDX-MS data; L.J. performed enzymatic assays; S.M., Y.C. and I.G. provided resources; D.K. and I.G. drafted the manuscript; E.A., D.K., M.P., J.M.D., Y.C. and I.G. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Yu Chen or Ioannis Gelis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary-Information

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcia, E., Keramisanou, D., Jacobs, L.M.C. et al. Dynamic signature of activity-stability tradeoff in lactamase evolution. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68620-z

Download citation

  • Received: 30 March 2025

  • Accepted: 08 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68620-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing