Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Observation of mechanical kink control and generation via acoustic waves
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 February 2026

Observation of mechanical kink control and generation via acoustic waves

  • Kai Qian  ORCID: orcid.org/0000-0003-1766-86161,2,
  • Nan Cheng  ORCID: orcid.org/0000-0001-5775-72133 na1,
  • Francesco Serafin3,4 na1,
  • Nicolas Herard1,
  • Kai Sun  ORCID: orcid.org/0000-0001-9595-76463,
  • Georgios Theocharis  ORCID: orcid.org/0000-0003-2984-41975,
  • Xiaoming Mao  ORCID: orcid.org/0000-0001-7920-39913 &
  • …
  • Nicholas Boechler  ORCID: orcid.org/0000-0001-9639-15331,6 

Nature Communications , Article number:  (2026) Cite this article

  • 1403 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Acoustics
  • Nonlinear phenomena
  • Phase transitions and critical phenomena
  • Topological matter

Abstract

Kinks are localized transitions between topologically distinct ground states and play a central role in systems from condensed matter to cosmology. While acoustic wave packets (here defined as small-amplitude mechanical waves, sometimes referred to as phonons) have been predicted to drive kink motion deterministically, experimental evidence has been elusive, with only stochastic motion from thermal phonons or quasi-static loading observed. This is largely due to the discrete nature of real materials, where the Peierls-Nabarro (PN) barrier hinders controlled phonon-kink interactions. Here, we report experimental observation of acoustic-wave–mediated control and generation of mechanical kinks in a topological metamaterial, which eliminates the PN barrier by supporting a zero-energy kink. We also computationally reveal the dynamics of acoustic wave packet interplay with highly discrete kinks, including long-duration motion and a continuous family of internal modes—features absent in conventional discrete nonlinear systems. Our results enable remote kink control, with potential applications in material stiffness tuning, shape morphing, locomotion, and robust signal transmission.

Similar content being viewed by others

Symmetry-driven artificial phononic media

Article 15 December 2025

Phonon transmission through a nonlocal metamaterial slab

Article Open access 17 April 2023

Total acoustic transmission in a honeycomb network empowered by compact acoustic isolator

Article Open access 16 January 2023

Data availability

The datasets that support the findings of this study are available in the Zenodo repository under https://doi.org/10.5281/zenodo.18028283.

Code availability

The codes that generate the numerical findings of this study are available in the Zenodo repository under https://doi.org/10.5281/zenodo.18039150.

References

  1. Dauxois, T. & Peyrard, M.Physics of solitons (Cambridge University Press, 2006).

  2. Vachaspati, T.Kinks and domain walls: An introduction to classical and quantum solitons (Cambridge University Press, 2007).

  3. Chaikin, P. M., Lubensky, T. C. & Witten, T. A.Principles of condensed matter physics, vol. 10 (Cambridge university press Cambridge, 1995).

  4. Frenkel, J. On the theory of plastic deformation and twinning. J. Phys. 1, 137–149 (1939).

    Google Scholar 

  5. Weiner, J. Dislocation velocities in a linear chain. Phys. Rev. 136, A863 (1964).

    Google Scholar 

  6. Komarova, N. L. & Soffera, A. Nonlinear waves in double-stranded dna. Bull. Math. Biol. 67, 701–718 (2005).

    Google Scholar 

  7. Su, W.-P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979).

    Google Scholar 

  8. Nataf, G. et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat. Rev. Phys. 2, 634–648 (2020).

    Google Scholar 

  9. He, G. et al. Regulating two-dimensional colloidal crystal assembly through contactless acoustic annealing. J. Appl. Phys. 135 (2024).

  10. Chen, B. G. -g, Upadhyaya, N. & Vitelli, V. Nonlinear conduction via solitons in a topological mechanical insulator. Proc. Natl. Acad. Sci. 111, 13004–13009 (2014).

    Google Scholar 

  11. Zhou, Y., Chen, B. G. -g, Upadhyaya, N., Vitelli, V. Kink-antikink asymmetry and impurity interactions in topological mechanical chains. Phys. Rev. E 95, 022202 (2017).

    Google Scholar 

  12. Mao, X. & Lubensky, T. C. Maxwell lattices and topological mechanics. Annu. Rev. Condens. Matter Phys. 9, 413–433 (2018).

    Google Scholar 

  13. Zhang, Y., Li, B., Zheng, Q., Genin, G. M. & Chen, C. Programmable and robust static topological solitons in mechanical metamaterials. Nat. Commun. 10, 5605 (2019).

    Google Scholar 

  14. Upadhyaya, N., Chen, B. G. & Vitelli, V. Nuts and bolts of supersymmetry. Phys. Rev. Res. 2, 043098 (2020).

    Google Scholar 

  15. Lo, P.-W. et al. Topology in nonlinear mechanical systems. Phys. Rev. Lett. 127, 076802 (2021).

    Google Scholar 

  16. Sun, K. & Mao, X. Fractional excitations in non-euclidean elastic plates. Phys. Rev. Lett. 127, 098001 (2021).

    Google Scholar 

  17. Deng, B., Zanaty, M., Forte, A. E. & Bertoldi, K. Topological solitons make metamaterials crawl. Phys. Rev. Appl. 17, 014004 (2022).

    Google Scholar 

  18. Núñez, C. N. V., Poli, A., Stanifer, E., Mao, X. & Arruda, E. M. Fractional topological solitons in nonlinear viscoelastic ribbons with tunable speed. Extrem. Mech. Lett. 61, 102027 (2023).

    Google Scholar 

  19. Hussein, M. I., Leamy, M. J. & Ruzzene, M. Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 040802 (2014).

    Google Scholar 

  20. Gorman, J., Wood, D. & Vreeland Jr, T. Mobility of dislocations in aluminum. J. Appl. Phys. 40, 833–841 (1969).

    Google Scholar 

  21. Hutchison, T., Rogers, D. & Turkington, R. Thermally activated dislocation motion in aluminum. J. Appl. Phys. 36, 871–873 (1965).

    Google Scholar 

  22. Ogata, M., Terai, A. & Wada, Y. Brownian motion of a soliton in trans-polyacetylene. i. random walk mechanism. J. Phys. Soc. Jpn. 55, 2305–2314 (1986).

    Google Scholar 

  23. Hwang, M. & Arrieta, A. F. Extreme frequency conversion from soliton resonant interactions. Phys. Rev. Lett. 126, 073902 (2021).

    Google Scholar 

  24. Hasenfratz, W. & Klein, R. The interaction of a solitary wave solution with phonons in a one-dimensional model for displacive structural phase transitions. Phys. A: Stat. Mech. Appl. 89, 191–204 (1977).

    Google Scholar 

  25. Wada, Y. & Schrieffer, J. Brownian motion of a domain wall and the diffusion constants. Phys. Rev. B 18, 3897 (1978).

    Google Scholar 

  26. Theodorakopoulos, N. Dynamics of non-linear systems: The kink-phonon interaction. Z. f.ür. Phys. B Condens. Matter 33, 385–390 (1979).

    Google Scholar 

  27. Theodorakopoulos, N., Wünderlich, W. & Klein, R. Lattice phonons in the presence of non-linear excitations. Solid State Commun. 33, 213–216 (1980).

    Google Scholar 

  28. Klein, R., Hasenfratz, W., Theodorakopoulos, N. & Wünderlich, W. The kink-phonon and the kink-kink interaction in the ϕ4 model. Ferroelectrics 26, 721–724 (1980).

    Google Scholar 

  29. Ishiuchi, H. & Wada, Y. Brownian motion of a domain wall with higher order phonon interactions. Prog. Theor. Phys. Suppl. 69, 242–251 (1980).

    Google Scholar 

  30. Ogata, M. & Wada, Y. Momentum transfer between a kink and a phonon in the one-dimensional φ4 system. J. Phys. Soc. Jpn. 53, 3855–3870 (1984).

    Google Scholar 

  31. Abdelhady, A. & Weigel, H. Wave-packet scattering off the kink-solution. Int. J. Mod. Phys. A 26, 3625–3640 (2011).

    Google Scholar 

  32. Theodorakopoulos, N. Dynamics of the sine-gordon chain: The kink-phonon interaction, soliton diffusion and dynamical correlations. In Ordering in Strongly Fluctuating Condensed Matter Systems, 145–149 (Springer, 1980).

  33. Peierls, R. The size of a dislocation. Proc. Phys. Soc. 52, 34 (1940).

    Google Scholar 

  34. Nabarro, F. Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256 (1947).

    Google Scholar 

  35. Kivshar, Y. S. & Campbell, D. K. Peierls-nabarro potential barrier for highly localized nonlinear modes. Phys. Rev. E 48, 3077 (1993).

    Google Scholar 

  36. Braun, O. M. & Kivshar, Y. S.The Frenkel-Kontorova model: concepts, methods, and applications, vol. 18 (Springer, 2004).

  37. Chirilus-Bruckner, M., Chong, C., Cuevas-Maraver, J. & Kevrekidis, P. Sine-gordon equation: From discrete to continuum. The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics 31–57 (2014).

  38. Kevrekidis, P. G. & Cuevas-Maraver, J. A dynamical perspective on the φ4 model. Past, Present and Future26 (2019).

  39. Peyrard, M. & Kruskal, M. D. Kink dynamics in the highly discrete sine-gordon system. Phys. D: Nonlinear Phenom. 14, 88–102 (1984).

    Google Scholar 

  40. Speight, J. A discrete system without a peierls-nabarro barrier. Nonlinearity 10, 1615 (1997).

    Google Scholar 

  41. Dmitriev, S., Kevrekidis, P. & Yoshikawa, N. Standard nearest-neighbour discretizations of klein–gordon models cannot preserve both energy and linear momentum. J. Phys. A: Math. Gen. 39, 7217 (2006).

    Google Scholar 

  42. Dmitriev, S., Kevrekidis, P., Yoshikawa, N. & Frantzeskakis, D. Exact static solutions for discrete ϕ 4 models free of the peierls-nabarro barrier: Discretized first-integral approach. Phys. Rev. E 74, 046609 (2006).

    Google Scholar 

  43. Saadatmand, D., Marjaneh, A. M., Askari, A. & Weigel, H. Phonons scattering off discrete asymmetric solitons in the absence of a peierls–nabarro potential. Chaos, Solitons Fractals 180, 114550 (2024).

    Google Scholar 

  44. Scharf, R., Kivshar, Y. S., Sánchez, A. & Bishop, A. R. Sine-gordon kink-antikink generation on spatially periodic potentials. Phys. Rev. A 45, R5369 (1992).

    Google Scholar 

  45. Woodhouse, F. G., Ronellenfitsch, H. & Dunkel, J. Autonomous actuation of zero modes in mechanical networks far from equilibrium. Phys. Rev. Lett. 121, 178001 (2018).

    Google Scholar 

  46. Ghatak, A., Brandenbourger, M., Van Wezel, J. & Coulais, C. Observation of non-hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Proc. Natl. Acad. Sci. 117, 29561–29568 (2020).

    Google Scholar 

  47. Veenstra, J. et al. Non-reciprocal topological solitons in active metamaterials. Nature 627, 528–533 (2024).

    Google Scholar 

  48. Hobart, R. Peierls stress dependence on dislocation width. J. Appl. Phys. 36, 1944–1948 (1965).

    Google Scholar 

  49. Nabarro, F. The peierls stress for a wide dislocation. Mater. Sci. Eng.: A 113, 315–326 (1989).

    Google Scholar 

  50. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).

    Google Scholar 

  51. Kevrekidis, P. & Weinstein, M. Dynamics of lattice kinks. Phys. D: Nonlinear Phenom. 142, 113–152 (2000).

    Google Scholar 

  52. Peyrard, M. & Campbell, D. K. Kink-antikink interactions in a modified sine-gordon model. Phys. D: Nonlinear Phenom. 9, 33–51 (1983).

    Google Scholar 

  53. Fei, Z., Kivshar, Y. S. & Vázquez, L. Resonant kink-impurity interactions in the φ4 model. Phys. Rev. A 46, 5214 (1992).

    Google Scholar 

  54. Vardeny, Z. et al. Detection of soliton shape modes in polyacetylene. Phys. Rev. Lett. 57, 2995 (1986).

    Google Scholar 

  55. Mielenz, M. et al. Trapping of topological-structural defects in coulomb crystals. Phys. Rev. Lett. 110, 133004 (2013).

    Google Scholar 

  56. Ni, X., Yves, S., Krasnok, A. & Alu, A. Topological metamaterials. Chem. Rev. 123, 7585–7654 (2023).

    Google Scholar 

  57. Rocklin, D. Z., Zhou, S., Sun, K. & Mao, X. Transformable topological mechanical metamaterials. Nat. Commun. 8, 14201 (2017).

    Google Scholar 

  58. Rodríguez, S. E., Calius, E., Khatibi, A., Orifici, A. & Das, R. Mechanical metamaterial systems as transformation mechanisms. Extrem. Mech. Lett. 61, 101985 (2023).

    Google Scholar 

  59. Peplow, M. The tiniest lego: a tale of nanoscale motors, rotors, switches and pumps. Nature 525 (2015).

  60. Nirody, J. A., Sun, Y.-R. & Lo, C.-J. The biophysicist’s guide to the bacterial flagellar motor. Adv. Phys.: X 2, 324–343 (2017).

    Google Scholar 

  61. Shi, X. et al. Sustained unidirectional rotation of a self-organized dna rotor on a nanopore. Nat. Phys. 18, 1105–1111 (2022).

    Google Scholar 

  62. Kim, K., Xu, X., Guo, J. & Fan, D. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat. Commun. 5, 3632 (2014).

    Google Scholar 

  63. Manton, N. & Sutcliffe, P.Topological solitons (Cambridge University Press, 2004).

  64. Gilat, A. & Subramaniam, V. Numerical methods for engineers and scientists. An Introduction with Applications Using MATLAB,20014 (2013).

  65. Calladine, C. R. Buckminster fuller’s “tensegrity” structures and clerk maxwell’s rules for the construction of stiff frames. Int. J. solids Struct. 14, 161–172 (1978).

    Google Scholar 

  66. Sun, K., Souslov, A., Mao, X. & Lubensky, T. C. Surface phonons, elastic response, and conformal invariance in twisted kagome lattices. Proc. Natl. Acad. Sci. 109, 12369–12374 (2012).

    Google Scholar 

  67. Kamimura, Y., Edagawa, K. & Takeuchi, S. Experimental evaluation of the peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Materialia 61, 294–309 (2013).

    Google Scholar 

  68. Paulose, J., Chen, B. G. -g & Vitelli, V. Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys. 11, 153–156 (2015).

    Google Scholar 

  69. Sato, K. & Tanaka, R. Solitons in one-dimensional mechanical linkage. Phys. Rev. E 98, 013001 (2018).

    Google Scholar 

  70. Petukhov, B. Quantum mechanical tunnel nucleation of kink-solitons in a random potential. J. Stat. Mech.: Theory Exp. 2018, 093104 (2018).

    Google Scholar 

Download references

Acknowledgements

K.Q., N.C., X.M., and N.B. acknowledge support from the US Army Research Office (Grant No. W911NF-20-2-0182). N.C., F.S., K.S., and X.M. acknowledge support from the US Office of Naval Research (MURI N00014-20-1-2479). This research is funded in part by a grant from ICAM the Institute for Complex Adaptive Matter to K.Q. In addition, K.Q. acknowledges support from the UCSD MAE Stanford S. Penner Post-Doctoral Research Travel Award. N.H. acknowledges support from the UC President’s Dissertation Year Fellowship.

Author information

Author notes
  1. These authors contributed equally: Nan Cheng, Francesco Serafin.

Authors and Affiliations

  1. Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA

    Kai Qian, Nicolas Herard & Nicholas Boechler

  2. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

    Kai Qian

  3. Department of Physics, University of Michigan, Ann Arbor, MI, USA

    Nan Cheng, Francesco Serafin, Kai Sun & Xiaoming Mao

  4. Department of Physics and Materials Science, University of Luxembourg, Esch-sur-Alzette, Luxembourg

    Francesco Serafin

  5. Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique - Graduate School (IA-GS), CNRS, Le Mans, France

    Georgios Theocharis

  6. Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA, USA

    Nicholas Boechler

Authors
  1. Kai Qian
    View author publications

    Search author on:PubMed Google Scholar

  2. Nan Cheng
    View author publications

    Search author on:PubMed Google Scholar

  3. Francesco Serafin
    View author publications

    Search author on:PubMed Google Scholar

  4. Nicolas Herard
    View author publications

    Search author on:PubMed Google Scholar

  5. Kai Sun
    View author publications

    Search author on:PubMed Google Scholar

  6. Georgios Theocharis
    View author publications

    Search author on:PubMed Google Scholar

  7. Xiaoming Mao
    View author publications

    Search author on:PubMed Google Scholar

  8. Nicholas Boechler
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.Q. performed theoretical and numerical analyses, designed the experiments, and built the experimental setup. K.Q. and N.H. conducted the experiments. N.C. and F.S. carried out additional theoretical analyses and simulations. K.S., G.T., X.M., and N.B. supervised the work. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Georgios Theocharis, Xiaoming Mao or Nicholas Boechler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Supplementary Movie 5

Supplementary Movie 6

Supplementary Movie 7

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, K., Cheng, N., Serafin, F. et al. Observation of mechanical kink control and generation via acoustic waves. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68688-7

Download citation

  • Received: 10 April 2025

  • Accepted: 14 January 2026

  • Published: 06 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68688-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing