Abstract
Kinks are localized transitions between topologically distinct ground states and play a central role in systems from condensed matter to cosmology. While acoustic wave packets (here defined as small-amplitude mechanical waves, sometimes referred to as phonons) have been predicted to drive kink motion deterministically, experimental evidence has been elusive, with only stochastic motion from thermal phonons or quasi-static loading observed. This is largely due to the discrete nature of real materials, where the Peierls-Nabarro (PN) barrier hinders controlled phonon-kink interactions. Here, we report experimental observation of acoustic-wave–mediated control and generation of mechanical kinks in a topological metamaterial, which eliminates the PN barrier by supporting a zero-energy kink. We also computationally reveal the dynamics of acoustic wave packet interplay with highly discrete kinks, including long-duration motion and a continuous family of internal modes—features absent in conventional discrete nonlinear systems. Our results enable remote kink control, with potential applications in material stiffness tuning, shape morphing, locomotion, and robust signal transmission.
Similar content being viewed by others
Data availability
The datasets that support the findings of this study are available in the Zenodo repository under https://doi.org/10.5281/zenodo.18028283.
Code availability
The codes that generate the numerical findings of this study are available in the Zenodo repository under https://doi.org/10.5281/zenodo.18039150.
References
Dauxois, T. & Peyrard, M.Physics of solitons (Cambridge University Press, 2006).
Vachaspati, T.Kinks and domain walls: An introduction to classical and quantum solitons (Cambridge University Press, 2007).
Chaikin, P. M., Lubensky, T. C. & Witten, T. A.Principles of condensed matter physics, vol. 10 (Cambridge university press Cambridge, 1995).
Frenkel, J. On the theory of plastic deformation and twinning. J. Phys. 1, 137–149 (1939).
Weiner, J. Dislocation velocities in a linear chain. Phys. Rev. 136, A863 (1964).
Komarova, N. L. & Soffera, A. Nonlinear waves in double-stranded dna. Bull. Math. Biol. 67, 701–718 (2005).
Su, W.-P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979).
Nataf, G. et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat. Rev. Phys. 2, 634–648 (2020).
He, G. et al. Regulating two-dimensional colloidal crystal assembly through contactless acoustic annealing. J. Appl. Phys. 135 (2024).
Chen, B. G. -g, Upadhyaya, N. & Vitelli, V. Nonlinear conduction via solitons in a topological mechanical insulator. Proc. Natl. Acad. Sci. 111, 13004–13009 (2014).
Zhou, Y., Chen, B. G. -g, Upadhyaya, N., Vitelli, V. Kink-antikink asymmetry and impurity interactions in topological mechanical chains. Phys. Rev. E 95, 022202 (2017).
Mao, X. & Lubensky, T. C. Maxwell lattices and topological mechanics. Annu. Rev. Condens. Matter Phys. 9, 413–433 (2018).
Zhang, Y., Li, B., Zheng, Q., Genin, G. M. & Chen, C. Programmable and robust static topological solitons in mechanical metamaterials. Nat. Commun. 10, 5605 (2019).
Upadhyaya, N., Chen, B. G. & Vitelli, V. Nuts and bolts of supersymmetry. Phys. Rev. Res. 2, 043098 (2020).
Lo, P.-W. et al. Topology in nonlinear mechanical systems. Phys. Rev. Lett. 127, 076802 (2021).
Sun, K. & Mao, X. Fractional excitations in non-euclidean elastic plates. Phys. Rev. Lett. 127, 098001 (2021).
Deng, B., Zanaty, M., Forte, A. E. & Bertoldi, K. Topological solitons make metamaterials crawl. Phys. Rev. Appl. 17, 014004 (2022).
Núñez, C. N. V., Poli, A., Stanifer, E., Mao, X. & Arruda, E. M. Fractional topological solitons in nonlinear viscoelastic ribbons with tunable speed. Extrem. Mech. Lett. 61, 102027 (2023).
Hussein, M. I., Leamy, M. J. & Ruzzene, M. Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 040802 (2014).
Gorman, J., Wood, D. & Vreeland Jr, T. Mobility of dislocations in aluminum. J. Appl. Phys. 40, 833–841 (1969).
Hutchison, T., Rogers, D. & Turkington, R. Thermally activated dislocation motion in aluminum. J. Appl. Phys. 36, 871–873 (1965).
Ogata, M., Terai, A. & Wada, Y. Brownian motion of a soliton in trans-polyacetylene. i. random walk mechanism. J. Phys. Soc. Jpn. 55, 2305–2314 (1986).
Hwang, M. & Arrieta, A. F. Extreme frequency conversion from soliton resonant interactions. Phys. Rev. Lett. 126, 073902 (2021).
Hasenfratz, W. & Klein, R. The interaction of a solitary wave solution with phonons in a one-dimensional model for displacive structural phase transitions. Phys. A: Stat. Mech. Appl. 89, 191–204 (1977).
Wada, Y. & Schrieffer, J. Brownian motion of a domain wall and the diffusion constants. Phys. Rev. B 18, 3897 (1978).
Theodorakopoulos, N. Dynamics of non-linear systems: The kink-phonon interaction. Z. f.ür. Phys. B Condens. Matter 33, 385–390 (1979).
Theodorakopoulos, N., Wünderlich, W. & Klein, R. Lattice phonons in the presence of non-linear excitations. Solid State Commun. 33, 213–216 (1980).
Klein, R., Hasenfratz, W., Theodorakopoulos, N. & Wünderlich, W. The kink-phonon and the kink-kink interaction in the ϕ4 model. Ferroelectrics 26, 721–724 (1980).
Ishiuchi, H. & Wada, Y. Brownian motion of a domain wall with higher order phonon interactions. Prog. Theor. Phys. Suppl. 69, 242–251 (1980).
Ogata, M. & Wada, Y. Momentum transfer between a kink and a phonon in the one-dimensional φ4 system. J. Phys. Soc. Jpn. 53, 3855–3870 (1984).
Abdelhady, A. & Weigel, H. Wave-packet scattering off the kink-solution. Int. J. Mod. Phys. A 26, 3625–3640 (2011).
Theodorakopoulos, N. Dynamics of the sine-gordon chain: The kink-phonon interaction, soliton diffusion and dynamical correlations. In Ordering in Strongly Fluctuating Condensed Matter Systems, 145–149 (Springer, 1980).
Peierls, R. The size of a dislocation. Proc. Phys. Soc. 52, 34 (1940).
Nabarro, F. Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256 (1947).
Kivshar, Y. S. & Campbell, D. K. Peierls-nabarro potential barrier for highly localized nonlinear modes. Phys. Rev. E 48, 3077 (1993).
Braun, O. M. & Kivshar, Y. S.The Frenkel-Kontorova model: concepts, methods, and applications, vol. 18 (Springer, 2004).
Chirilus-Bruckner, M., Chong, C., Cuevas-Maraver, J. & Kevrekidis, P. Sine-gordon equation: From discrete to continuum. The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics 31–57 (2014).
Kevrekidis, P. G. & Cuevas-Maraver, J. A dynamical perspective on the φ4 model. Past, Present and Future26 (2019).
Peyrard, M. & Kruskal, M. D. Kink dynamics in the highly discrete sine-gordon system. Phys. D: Nonlinear Phenom. 14, 88–102 (1984).
Speight, J. A discrete system without a peierls-nabarro barrier. Nonlinearity 10, 1615 (1997).
Dmitriev, S., Kevrekidis, P. & Yoshikawa, N. Standard nearest-neighbour discretizations of klein–gordon models cannot preserve both energy and linear momentum. J. Phys. A: Math. Gen. 39, 7217 (2006).
Dmitriev, S., Kevrekidis, P., Yoshikawa, N. & Frantzeskakis, D. Exact static solutions for discrete ϕ 4 models free of the peierls-nabarro barrier: Discretized first-integral approach. Phys. Rev. E 74, 046609 (2006).
Saadatmand, D., Marjaneh, A. M., Askari, A. & Weigel, H. Phonons scattering off discrete asymmetric solitons in the absence of a peierls–nabarro potential. Chaos, Solitons Fractals 180, 114550 (2024).
Scharf, R., Kivshar, Y. S., Sánchez, A. & Bishop, A. R. Sine-gordon kink-antikink generation on spatially periodic potentials. Phys. Rev. A 45, R5369 (1992).
Woodhouse, F. G., Ronellenfitsch, H. & Dunkel, J. Autonomous actuation of zero modes in mechanical networks far from equilibrium. Phys. Rev. Lett. 121, 178001 (2018).
Ghatak, A., Brandenbourger, M., Van Wezel, J. & Coulais, C. Observation of non-hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Proc. Natl. Acad. Sci. 117, 29561–29568 (2020).
Veenstra, J. et al. Non-reciprocal topological solitons in active metamaterials. Nature 627, 528–533 (2024).
Hobart, R. Peierls stress dependence on dislocation width. J. Appl. Phys. 36, 1944–1948 (1965).
Nabarro, F. The peierls stress for a wide dislocation. Mater. Sci. Eng.: A 113, 315–326 (1989).
Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).
Kevrekidis, P. & Weinstein, M. Dynamics of lattice kinks. Phys. D: Nonlinear Phenom. 142, 113–152 (2000).
Peyrard, M. & Campbell, D. K. Kink-antikink interactions in a modified sine-gordon model. Phys. D: Nonlinear Phenom. 9, 33–51 (1983).
Fei, Z., Kivshar, Y. S. & Vázquez, L. Resonant kink-impurity interactions in the φ4 model. Phys. Rev. A 46, 5214 (1992).
Vardeny, Z. et al. Detection of soliton shape modes in polyacetylene. Phys. Rev. Lett. 57, 2995 (1986).
Mielenz, M. et al. Trapping of topological-structural defects in coulomb crystals. Phys. Rev. Lett. 110, 133004 (2013).
Ni, X., Yves, S., Krasnok, A. & Alu, A. Topological metamaterials. Chem. Rev. 123, 7585–7654 (2023).
Rocklin, D. Z., Zhou, S., Sun, K. & Mao, X. Transformable topological mechanical metamaterials. Nat. Commun. 8, 14201 (2017).
Rodríguez, S. E., Calius, E., Khatibi, A., Orifici, A. & Das, R. Mechanical metamaterial systems as transformation mechanisms. Extrem. Mech. Lett. 61, 101985 (2023).
Peplow, M. The tiniest lego: a tale of nanoscale motors, rotors, switches and pumps. Nature 525 (2015).
Nirody, J. A., Sun, Y.-R. & Lo, C.-J. The biophysicist’s guide to the bacterial flagellar motor. Adv. Phys.: X 2, 324–343 (2017).
Shi, X. et al. Sustained unidirectional rotation of a self-organized dna rotor on a nanopore. Nat. Phys. 18, 1105–1111 (2022).
Kim, K., Xu, X., Guo, J. & Fan, D. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat. Commun. 5, 3632 (2014).
Manton, N. & Sutcliffe, P.Topological solitons (Cambridge University Press, 2004).
Gilat, A. & Subramaniam, V. Numerical methods for engineers and scientists. An Introduction with Applications Using MATLAB,20014 (2013).
Calladine, C. R. Buckminster fuller’s “tensegrity” structures and clerk maxwell’s rules for the construction of stiff frames. Int. J. solids Struct. 14, 161–172 (1978).
Sun, K., Souslov, A., Mao, X. & Lubensky, T. C. Surface phonons, elastic response, and conformal invariance in twisted kagome lattices. Proc. Natl. Acad. Sci. 109, 12369–12374 (2012).
Kamimura, Y., Edagawa, K. & Takeuchi, S. Experimental evaluation of the peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Materialia 61, 294–309 (2013).
Paulose, J., Chen, B. G. -g & Vitelli, V. Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys. 11, 153–156 (2015).
Sato, K. & Tanaka, R. Solitons in one-dimensional mechanical linkage. Phys. Rev. E 98, 013001 (2018).
Petukhov, B. Quantum mechanical tunnel nucleation of kink-solitons in a random potential. J. Stat. Mech.: Theory Exp. 2018, 093104 (2018).
Acknowledgements
K.Q., N.C., X.M., and N.B. acknowledge support from the US Army Research Office (Grant No. W911NF-20-2-0182). N.C., F.S., K.S., and X.M. acknowledge support from the US Office of Naval Research (MURI N00014-20-1-2479). This research is funded in part by a grant from ICAM the Institute for Complex Adaptive Matter to K.Q. In addition, K.Q. acknowledges support from the UCSD MAE Stanford S. Penner Post-Doctoral Research Travel Award. N.H. acknowledges support from the UC President’s Dissertation Year Fellowship.
Author information
Authors and Affiliations
Contributions
K.Q. performed theoretical and numerical analyses, designed the experiments, and built the experimental setup. K.Q. and N.H. conducted the experiments. N.C. and F.S. carried out additional theoretical analyses and simulations. K.S., G.T., X.M., and N.B. supervised the work. All authors discussed the results and contributed to the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Qian, K., Cheng, N., Serafin, F. et al. Observation of mechanical kink control and generation via acoustic waves. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68688-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68688-7


