Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Ampere-level CO2 electroreduction to multi-carbon oxygenates in acidic electrolyte through surface microenvironment reconstruction
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Ampere-level CO2 electroreduction to multi-carbon oxygenates in acidic electrolyte through surface microenvironment reconstruction

  • Yaoyu Yin1,2,
  • Zhongnan Ling1,
  • Shiqiang Liu1,
  • Shipeng Zhang1,
  • Hengan Wang1,2,
  • Wenling Zhao1,2,
  • Huisheng Qin1,2,
  • Rongjuan Feng1,
  • Xueqing Xing3,
  • Lihong Jing  ORCID: orcid.org/0000-0001-6115-27431,
  • Yi Xu  ORCID: orcid.org/0000-0002-8108-09751,2,
  • Qinggong Zhu  ORCID: orcid.org/0000-0001-8730-84861,2,
  • Xiaofu Sun  ORCID: orcid.org/0000-0003-3044-01061,2,
  • Qingli Qian  ORCID: orcid.org/0000-0002-1142-89481,2,
  • Jianling Zhang1,2,
  • Xinchen Kang  ORCID: orcid.org/0000-0003-0593-08401,2 &
  • …
  • Buxing Han  ORCID: orcid.org/0000-0003-0440-809X1,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electrocatalysis
  • Ionic liquids

Abstract

Efficient CO2 electroreduction to multi-carbon (C2+) oxygenates in acidic electrolytes remains a great challenge, especially under high current density conditions. In this study, we prepare an ionic liquid (IL)-modified Cu electrode (IL@Cu), which achieve a Faradaic efficiency (FE) of 82.7% toward C2+ products at a current density of 2.0 A cm−2 in 0.5 M K2SO4 (pH = 1, adjusted with H2SO4), with a single-pass carbon efficiency reaching 78.5%. Under the same conditions, the partial current density for C2+ oxygenates and ethanol exceed 1.2 A cm−2 and 1.0 A cm−2, respectively, over IL@Cu. Mechanism study has shown that K+ cations are repelled by the IL cations during the reaction, allowing water molecules to access the electrode surface. The displacement of K+ enhances C–C coupling, while the proximity of water to the electrode surface facilitates the incorporation of oxygen-containing intermediates into the hydrogen bond network, thereby promoting the formation of C2+ oxygenates.

References

  1. He, M., Sun, Y. & Han, B. Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem. Int. Ed. 61, e202112835 (2022).

    Google Scholar 

  2. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Google Scholar 

  3. Jia, S. et al. Electrochemical conversion of CO2 via C−X bond formation: recent progress and perspective. Chem. Synth. 4, 60 (2024).

    Google Scholar 

  4. Zhang, Y. et al. Low-coordinated copper facilitates the *CH2CO affinity at enhanced rectifying interface of Cu/Cu2O for efficient CO2-to-multicarbon alcohols conversion. Nat. Commun. 15, 5172 (2024).

    Google Scholar 

  5. Gao, X. et al. Intermediate-regulated dynamic restructuring at Ag-Cu biphasic interface enables selective CO2 electroreduction to C2+ fuels. Nat. Commun. 15, 10331 (2024).

    Google Scholar 

  6. Yin, Y. et al. Modulating CO2 electroreduction pathways through controlled ionomer arrangement on catalyst surfaces via solvent dispersion. Innovation 6, 100882 (2025).

    Google Scholar 

  7. Yang, P. & Gao, M. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem. Soc. Rev. 52, 4343–4380 (2023).

    Google Scholar 

  8. Li, Z. et al. Mesostructure-specific configuration of *CO adsorption for selective CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 64, e202413832 (2025).

    Google Scholar 

  9. Bi, J. et al. Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols. Nat. Commun. 14, 2823 (2023).

    Google Scholar 

  10. Zhao, Y. et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth. 2, 403–412 (2023).

    Google Scholar 

  11. Cao, Y. et al. Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions. Nat. Commun. 14, 2387 (2023).

    Google Scholar 

  12. Cao, X., Cha, S. & Gong, M. Interfacial electrical double layer in electrocatalytic reactions: fundamentals, characterizations and applications. Acta Phys. -Chim. Sin 41, 2410018 (2025).

    Google Scholar 

  13. Shayesteh Zeraati, A. et al. Carbon- and energy-efficient ethanol electrosynthesis via interfacial cation enrichment. Nat. Synth. 4, 75–83 (2025).

    Google Scholar 

  14. Liu, Z. et al. Switching CO2 electroreduction toward ethanol by delocalization state-tuned bond cleavage. J. Am. Chem. Soc. 146, 14260–14266 (2024).

    Google Scholar 

  15. Li, J. et al. Twin heterostructure engineering and facet effect boosts efficient reduction CO2-to-ethanol at low potential on Cu2O@Cu2S catalysts. ACS Catal. 14, 266–3277 (2024).

    Google Scholar 

  16. Fu, W. et al. Preserving molecular tuning for enhanced electrocatalytic CO2-to-ethanol conversion. Angew. Chem. Int. Ed. 63, e202407992 (2024).

    Google Scholar 

  17. Zhang, H. et al. Dynamic ionization equilibrium-induced “oxygen exchange” in CO electroreduction. ACS Catal. 14, 10737–10745 (2024).

    Google Scholar 

  18. Zhou, J. et al. Regulating interfacial hydrogen-bonding networks by implanting Cu sites with perfluorooctane to accelerate CO2 electroreduction to ethanol. Angew. Chem. Int. Ed. 64, e202418459 (2024).

    Google Scholar 

  19. Li, J. et al. MOFs-based single/dual-atom catalysts: atomically active sites engineering for efficient CO2 reduction. Chem. Synth. 5, 69 (2025).

    Google Scholar 

  20. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Google Scholar 

  21. Zhang, Z. et al. Molecular understanding of the critical role of alkali metal cations in initiating CO2 electroreduction on Cu(100) surface. Nat. Commun. 15, 612 (2024).

    Google Scholar 

  22. Tan, Z. et al. Alkaline ionic liquid microphase promotes deep reduction of CO2 on copper. J. Am. Chem. Soc. 145, 21983–21990 (2024).

    Google Scholar 

  23. Ahmed, Y. et al. Interface modification by ionic liquid for efficient and stable FAPbI3 perovskite solar cells. Acta Phys. Chim. Sin 40, 2303057 (2024).

    Google Scholar 

  24. Zhang, M. et al. Mechanism of efficient electroreduction of CO2 to CO at Ag electrode in imidazolium-based ionic liquids/acetonitrile solution. Appl. Catal. B 359, 124508 (2024).

    Google Scholar 

  25. Dongare, S. et al. A bifunctional ionic liquid for capture and electrochemical conversion of CO2 to CO over silver. ACS Catal 13, 7812–7821 (2023).

    Google Scholar 

  26. Coskun, O. K. et al. Tailoring electrochemical CO2 reduction on copper by reactive ionic liquid and native hydrogen bond donors. Angew. Chem. Int. Ed. 136, e202312163 (2024).

    Google Scholar 

  27. Sha, Y. et al. Anchoring ionic liquid in copper electrocatalyst for improving CO2 conversion to ethylene. Angew. Chem. Int. Ed. 61, e202200039 (2024).

    Google Scholar 

  28. Cai, H. et al. Ionic liquid-induced product switching in CO2 electroreduction on copper reaction interface. Adv. Funct. Mater. 34, 2404102 (2024).

    Google Scholar 

  29. Kang, X. et al. Synthesis of hierarchical porous metals using ionic-liquid-based media as solvent and template. Angew. Chem. Int. Ed. 56, 12683–12686 (2017).

    Google Scholar 

  30. Kang, X. et al. Formation of large nanodomains in liquid solutions near the phase boundary. Chem. Commun. 52, 14286–14289 (2016).

    Google Scholar 

  31. Xu, B. et al. Highly efficient electrocatalytic CO2 reduction to C2+ products on a poly(ionic liquid)-based Cu(0)-Cu(I) tandem catalyst. Angew. Chem. Int. Ed. 61, e20211065 (2022).

    Google Scholar 

  32. Qin, D. et al. Enhanced electrochemical nitrate-to-ammonia performance of cobalt oxide by protic ionic liquid modification. Angew. Chem. Int. Ed. 62, e202304935 (2023).

    Google Scholar 

  33. Kiefer, J., Fries, J. & Leipertz, A. Experimental vibrational study of imidazolium-based ionic liquids: raman and infrared spectra of 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide and 1-ethyl-3-methylimidazolium ethyl sulfate. Appl. Spectrosc. 61, 1306–1311 (2007).

    Google Scholar 

  34. Dhumal, N., Noack, K., Kiefer, J. & Kim, H. Molecular structure and interactions in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. A 118, 2547–2557 (2014).

    Google Scholar 

  35. Cao, Y. et al. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1–9 (2017).

    Google Scholar 

  36. Lian, Z., Dattila, F. & López, N. Stability and lifetime of diffusion-trapped oxygen in oxide-derived copper CO2 reduction electrocatalysts. Nat. Catal. 7, 401 (2024).

    Google Scholar 

  37. Zhang, P. et al. Tuning the surface field by embedding cations into metals to direct the reaction pathway of CO2 electroreduction. CCS Chem 6, 631–640 (2024).

    Google Scholar 

  38. Liu, S. et al. Temperature-dependent pathways in carbon dioxide electroreduction. Sci. Bull. 70, 889–896 (2025).

    Google Scholar 

  39. Gunathunge, C. M. et al. Surface-adsorbed CO as an infrared probe of electrocatalytic interfaces. ACS Catal 10, 11700–11711 (2020).

    Google Scholar 

  40. Wang, P. et al. Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling. Nat. Commun. 13, 3754 (2022).

    Google Scholar 

  41. Wang, Y. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Google Scholar 

  42. Wang, Y. et al. Characterizing surface-confined interfacial water at graphene surface by in situ Raman spectroscopy. Joule 7, 1–11 (2023).

    Google Scholar 

  43. Chen, S. et al. Unveiling the proton-feeding effect in sulfur-doped Fe−N−C single-atom catalyst for enhanced CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202206233 (2022).

    Google Scholar 

  44. Li, J. et al. Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy Environ. Sci. 12, 2298–2304 (2019).

    Google Scholar 

  45. Zhu, Z. et al. Covalent organic framework ionomer steering the CO2 electroreduction pathway on Cu at industrial-grade current density. J. Am. Chem. Soc. 146, 1572–1579 (2024).

    Google Scholar 

  46. Ovalle, V. J. et al. Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal. 5, 624–632 (2022).

    Google Scholar 

  47. Wang, S. et al. Manipulating C-C coupling pathway in electrochemical CO2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst. Nat. Commun. 15, 10247 (2024).

    Google Scholar 

  48. Zhao, Z. et al. Highly efficient electroreduction of CO2 to ethanol via asymmetric C-C coupling by a metal-organic framework with heterodimetal dual sites. J. Am. Chem. Soc. 145, 26783–26790 (2023).

    Google Scholar 

  49. Zhan, C. et al. Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol. Nat. Energy 9, 1485–1496 (2024).

    Google Scholar 

  50. Li, Z. et al. A Small-angle X-ray scattering station at Beijing synchrotron radiation facility. Instrum. Sci. Technol. 42, 128–141 (2014).

    Google Scholar 

  51. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Google Scholar 

  52. Sun, Z. et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017).

    Google Scholar 

  53. Li, S. et al. Ampere-level CO2 electroreduction with single-pass conversion exceeding 85% in acid over silver penetration electrodes. Nat. Commun. 15, 6101 (2024).

    Google Scholar 

  54. Li, Z. et al. Directing CO2 electroreduction pathways for selective C2 product formation using single-site doped copper catalysts. Nat. Chem. Eng. 1, 159–169 (2024).

    Google Scholar 

  55. Jiao, J. et al. Lattice strain engineering boosts CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 63, e202409563 (2024).

    Google Scholar 

  56. Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    Google Scholar 

  57. Heinz, H., Vaia, R. A., Farmer, B. L. & Naik, R. R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12−6 and 9−6 lennard-jones potentials. J. Phys. Chem. C 112, 17281–17290 (2008).

    Google Scholar 

  58. Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Google Scholar 

  59. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Google Scholar 

  60. Melander, M. M. Frozen or dynamic? — An atomistic simulation perspective on the timescales of electrochemical reactions. Electrochim. Acta. 446, 142095 (2023).

    Google Scholar 

  61. Kuhne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Google Scholar 

  62. Martyna, G. J., Klein, M. L. & Tuckerman, M. Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992).

    Google Scholar 

  63. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).

    Google Scholar 

  64. Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  65. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Google Scholar 

  66. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Google Scholar 

  67. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (22273108, 22033009, 22293015, and 22121002), the Youth Innovation Promotion Association CAS (Y2022017), the CAS Project for Young Scientists in Basic Research (YSBR-050), the ICCAS Carbon Neutral Chemistry Program (CCNC-202403) and the National Key Research and Development Program of China (2023YFA1507400) for their financial support of this research. In situ SAXS-XAS measurements were performed on the 1W2B beamline of BSRF.

Author information

Authors and Affiliations

  1. Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China

    Yaoyu Yin, Zhongnan Ling, Shiqiang Liu, Shipeng Zhang, Hengan Wang, Wenling Zhao, Huisheng Qin, Rongjuan Feng, Lihong Jing, Yi Xu, Qinggong Zhu, Xiaofu Sun, Qingli Qian, Jianling Zhang, Xinchen Kang & Buxing Han

  2. School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China

    Yaoyu Yin, Hengan Wang, Wenling Zhao, Huisheng Qin, Yi Xu, Qinggong Zhu, Xiaofu Sun, Qingli Qian, Jianling Zhang, Xinchen Kang & Buxing Han

  3. Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

    Xueqing Xing

Authors
  1. Yaoyu Yin
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhongnan Ling
    View author publications

    Search author on:PubMed Google Scholar

  3. Shiqiang Liu
    View author publications

    Search author on:PubMed Google Scholar

  4. Shipeng Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Hengan Wang
    View author publications

    Search author on:PubMed Google Scholar

  6. Wenling Zhao
    View author publications

    Search author on:PubMed Google Scholar

  7. Huisheng Qin
    View author publications

    Search author on:PubMed Google Scholar

  8. Rongjuan Feng
    View author publications

    Search author on:PubMed Google Scholar

  9. Xueqing Xing
    View author publications

    Search author on:PubMed Google Scholar

  10. Lihong Jing
    View author publications

    Search author on:PubMed Google Scholar

  11. Yi Xu
    View author publications

    Search author on:PubMed Google Scholar

  12. Qinggong Zhu
    View author publications

    Search author on:PubMed Google Scholar

  13. Xiaofu Sun
    View author publications

    Search author on:PubMed Google Scholar

  14. Qingli Qian
    View author publications

    Search author on:PubMed Google Scholar

  15. Jianling Zhang
    View author publications

    Search author on:PubMed Google Scholar

  16. Xinchen Kang
    View author publications

    Search author on:PubMed Google Scholar

  17. Buxing Han
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.Y. and Z.L.: syntheses and characterizations of catalysts. S.L., S.Z., H.W., and L.J.: CO2RR experiments. W.L. and H.Q.: MD and DFT simulations. R.F. and X.S.: collection and analysis of in situ SERS and in situ ATR-SEIRAS spectra data. X.X., Y.X., and Q.Z.: collection and analysis of in situ XAS/SAXS combined technology. Q.Q. and J.Z.: mechanism analysis. X.K. and B.H.: overall design and direction of the project. Y.Y., X.K., and B.H.: preparation of the manuscript with help from all authors.

Corresponding authors

Correspondence to Xinchen Kang or Buxing Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Yi Xiao and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Ling, Z., Liu, S. et al. Ampere-level CO2 electroreduction to multi-carbon oxygenates in acidic electrolyte through surface microenvironment reconstruction. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68739-z

Download citation

  • Received: 28 July 2025

  • Accepted: 14 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68739-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing