Abstract
The Indian Ocean Dipole (IOD) strongly influences Indo-Pacific climate extremes, yet its drivers remain incompletely understood. Using satellite observations, reanalysis, and climate model experiments, we identify Middle East dust emissions as a major external driver of IOD variability. Observational evidence shows that dust over the 1980-2020 period account for ~36% of interannual IOD variance, surpassing El Niño-Southern Oscillation as the main driver during boreal autumn. Climate simulations confirm that reduced dust enhances warming in the western Indian Ocean and inducing easterly winds that shoal the eastern thermocline. These anomalies trigger Bjerknes and wind–evaporation–sea surface temperature feedbacks, amplifying a positive IOD pattern, and vice versa. Our findings reveal a powerful dust–IOD teleconnection, highlighting the need to incorporate aerosol forcing into seasonal forecasts and climate projections.
Data availability
All datasets about the study’s key findings are fully described in the main text and the Methods section. The data generated in the study have been deposited in the https://doi.org/10.5281/zenodo.15683119.
Code availability
The codes are available in the Zenodo files (https://doi.org/10.5281/zenodo.15683119).
References
McKenna, S., Santoso, A., Sen Gupta, A., Taschetto, A. S. & Cai, W. J. Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO. Sci. Rep. 10, 11500 (2020).
Schott, F. A., Xie, S.-P. & McCreary, J. P., Jr. Indian ocean circulation and climate variability. Rev. Geophys. 47, RG1002 (2009).
Black, E., Slingo, J. & Sperber, K. R. An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Monthly Weather Rev. 131, 74–94 (2003).
Cai, W. J. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254 (2014).
Clark, C. O., Webster, P. J. & Cole, J. E. Interdecadal variability of the relationship between the Indian Ocean zonal mode and East African coastal rainfall anomalies. J. Clim. 16, 548–554 (2003).
Pan, X. et al. Compound drought and heat waves variation and association with SST modes across China. Sci. Total Environ.907, 167934 (2024).
Yin, Y., Li, D., Sun, S., Wang, G. & Ke, Z. Global major weather and climate events in 2019 and the possible causes. Meteorol. Monthly 46, 538–546 (2020).
Zhou, Z.-Q., Xie, S.-P. & Zhang, R. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA 118, e2022255118 (2021).
Zheng, X. T., Lu, J. B. & Hui, C. Response of seasonal phase locking of Indian Ocean Dipole to global warming. Clim. Dyn. 57, 2737–2751 (2021).
Sang, Y. F., Singh, V. P. & Xu, K. Evolution of IOD-ENSO relationship at multiple time scales. Theor. Appl. Climatol. 136, 1303–1309 (2019).
Stuecker, M. F. et al. Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys. Res. Lett. 44, 2481–2492 (2017).
Banerjee, P. & Kumar, S. P. ENSO modulation of interannual variability of dust aerosols over the Northwest Indian Ocean*. J. Clim. 29, 1287–1303 (2016).
Jin, Q. J., Wei, J. F. & Yang, Z. L. Positive response of Indian summer rainfall to Middle East dust. Geophys. Res. Lett. 41, 4068–4074 (2014).
Zheng, Y. L. & Hoteit, I. Asymmetric impacts of Indian Ocean Dipole on summer climate over Arabian Peninsula. Geophys. Res. Lett. 52, e2025GL118195 (2025).
Liu, G. Y., Li, J. & Ying, T. The shift of decadal trend in Middle East dust activities attributed to North Tropical Atlantic variability. Sci. Bull. 68, 1439–1446 (2023).
Xi, X. Revisiting the recent dust trends and climate drivers using horizontal visibility and present weather observations. J. Geophys. Res. Atmos. 126, e2021JD034687 (2021).
Xia, W. W., Wang, Y. & Wang, B. Decreasing dust over the Middle East partly caused by irrigation expansion. Earths Future 10, e2021EF002252 (2022).
Zhang, W. J. et al. Tropical Indo-Pacific compounding thermal conditions drive the 2019 Australian extreme drought. Geophys. Res. Lett. 48, e2020GL090323 (2021).
Kim, D. et al. Asian and Trans-Pacific dust: a multimodel and multiremote sensing observation analysis. J. Geophys. Res.-Atmos. 124, 13534–13559 (2019).
Prospero, J. M., Delany, A. C., Delany, A. C. & Carlson, T. N. The Discovery of African dust transport to the western hemisphere and the Saharan Air Layer. Bull. Am. Meteorol. Soc. 102, E1239–E1260 (2021).
Yu, H. B. et al. Estimates of African dust deposition along the trans-atlantic transit using the decadelong record of aerosol measurements from CALIOP, MODIS, MISR, and IASI. J. Geophys. Res.Atmos. 124, 7975–7996 (2019).
Yu, Y., Kalashnikova, O. V., Garay, M. J. & Notaro, M. Climatology of Asian dust activation and transport potential based on MISR satellite observations and trajectory analysis. Atmos. Chem. Phys. 19, 363–378 (2019).
Kurniadi, A., Weller, E., Min, S. K. & Seong, M. G. Independent ENSO and IOD impacts on rainfall extremes over Indonesia. Int. J. Climatol. 41, 3640–3656 (2021).
Takaya, Y., Ishikawa, I., Kobayashi, C., Endo, H. & Ose, T. Enhanced Meiyu-Baiu rainfall in early summer 2020: aftermath of the 2019 super IOD event. Geophys. Res. Lett. 47, e2020GL090671 (2020).
Shao, Y. P., Klose, M. & Wyrwoll, K. H. Recent global dust trend and connections to climate forcing. J. Geophys. Res.Atmos. 118, 11107–11118 (2013).
Yao, Z. X. et al. Assessment of the simulation of Indian Ocean Dipole in the CESM-Impacts of atmospheric physics and model resolution. J. Adv. Model. Earth Syst. 8, 1932–1952 (2016).
Freund, M. B. et al. Higher frequency of Central Pacific El Nino events in recent decades relative to past centuries. Nat. Geosci. 12, 450 (2019).
Lin, R. P., Zheng, F. & Dong, X. ENSO frequency asymmetry and the Pacific decadal oscillation in observations and 19 CMIP5 models. Adv. Atmos. Sci. 35, 495–506 (2018).
Chuang, C. C., Kelly, J. T., Boyle, J. S. & Xie, S. C. Sensitivity of aerosol indirect effects to cloud nucleation and autoconversion parameterizations in short-range weather forecasts during the May 2003 aerosol IOP. J. Adv. Model. Earth Syst. 4, M09001 (2012).
Fletcher, C. G., Kravitz, B. & Badawy, B. Quantifying uncertainty from aerosol and atmospheric parameters and their impact on climate sensitivity. Atmos. Chem. Phys. 18, 17529–17543 (2018).
Christopher, S. A. & Jones, T. A. Dust radiative effects over global oceans. IEEE Geosci. Remote Sens. Lett. 5, 74–77 (2008).
Kok, J. F. et al. Mineral dust aerosol impacts on global climate and climate change. Nat. Rev. Earth Environ. 4, 71–86 (2023).
Azaneu, M., Matthews, A., and Baranowski, D. in EGU General Assembly 2022 EGU22-EGU4355 (Vienna, Austria, 2022).
Carton, J. A., Grodsky, S. A. & Liu, H. Variability of the oceanic mixed layer, 1960-2004. J. Clim. 21, 1029–1047 (2008).
Prasad, T. G. & Bahulayan, N. Mixed layer depth and thermocline climatology of the Arabian Sea and western equatorial Indian Ocean. Indian J. Mar. Sci. 25, 189–194 (1996).
Sharma, R., Agarwal, N., Momin, I. M. & Agarwal, V. K. Mixed layer depth and its variability in the Eastern equatorial Indian Ocean as revealed by observations and model simulations. MarGe 33, 154–163 (2010).
Ramanathan, V. et al. Cloud-radiative forcing and climate - results from the Earth Radiation Budget Experiment. Science 243, 57–63 (1989).
Stephens, G. L. Cloud feedbacks in the climate system: a critical review. J. Clim. 18, 237–273 (2005).
Ceppi, P., Brient, F., Zelinka, M. D. & Hartmann, D. L. Cloud feedback mechanisms and their representation in global climate models. Wiley Interdisciplinary Rev. Clim. Change 8, e465 (2017).
Xiao, Y., Tan, X. X. & Tang, Y. M. Definition of springtime easterly wind bursts in the Indian Ocean and their roles in triggering positive IOD events. Environ. Res. Commun. 6, 031005 (2024).
Karnauskas, K. B. A simple coupled model of the wind-evaporation-SST feedback with a role for stability. J. Clim. 35, 2149–2160 (2022).
Mahajan, S., Saravanan, R. & Chang, P. Free and forced variability of the Tropical Atlantic Ocean: role of the wind-evaporation-sea surface temperature feedback. J. Clim. 23, 5958–5977 (2010).
Liu, L. et al. Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Clim. Dyn. 43, 1715–1730 (2014).
Liu, L., Yu, W. D. & Li, T. Dynamic and thermodynamic air-sea coupling associated with the Indian Ocean Dipole diagnosed from 23 WCRP CMIP3 models. J. Clim. 24, 4941–4958 (2011).
Lin, Y. J., Cesana, G., Proistosescu, C., Zelinka, M. D. & Armour, K. C. The relative importance of forced and unforced temperature patterns in driving the time variation of low-cloud feedback. J. Clim. 38, 513–529 (2025).
Wu, M. X., Su, H. & Neelin, J. D. Multi-objective observational constraint of tropical Atlantic and Pacific low-cloud variability narrows uncertainty in cloud feedback. Nat. Commun. 16, 218 (2025).
Wyant, M. C., Bretherton, C. S., Rand, H. A. & Stevens, D. E. Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci. 54, 168–192 (1997).
Gantt, B., He, J., Zhang, X., Zhang, Y. & Nenes, A. Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects. Atmos. Chem. Phys. 14, 7485–7497 (2014).
He, J. et al. Decadal simulation and comprehensive evaluation of CESM/CAM5.1 with advanced chemistry, aerosol microphysics, and aerosol-cloud interactions. J. Adv. Model. Earth Syst. 7, 110–141 (2015).
Kim, S. K. et al. Decreased Indian Ocean Dipole variability under prolonged greenhouse warming. Nat. Commun. 15, 2811 (2024).
Park, H. J., An, S. I., Park, J. H., Yang, Y. M. & Kim, S. K. Sub-seasonal impact of El Niño-Southern Oscillation on development of the Indian Ocean Dipole. Commun. Earth Environ. 6, 374 (2025).
Ng, B. & Cai, W. J. Present-day zonal wind influences projected Indian Ocean Dipole skewness. Geophys. Res. Lett. 43, 11392–11399 (2016).
Liu, J. et al. Historical footprints and future projections of global dust burden from bias-corrected CMIP6 models. Npj Clim. Atmos. Sci. 7, 1 (2024).
Zhao, A., Ryder, C. L. & Wilcox, L. J. How well do the CMIP6 models simulate dust aerosols? Atmos. Chem. Phys. 22, 2095–2119 (2022).
Gelaro, R. et al. The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Diner, D. J. et al. Multi-angle imaging SpectroRadiometer (MISR)—Instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36, 1072–1087 (1998).
Yu, H. B. et al. Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003-2017. Atmos. Chem. Phys. 20, 139–161 (2020).
Nicolas, J. et al. Global surface hourly dataset. NOAA National Centers for Environmental Information (2001).
Pu, B. & Ginoux, P. How reliable are CMIP5 models in simulating dust optical depth? Atmos. Chem. Phys. 18, 12491–12510 (2018).
Kalashnikova, O. V., Kahn, R., Sokolik, I. N. & Li, W. H. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes. J. Geophys. Res. Atmos. 110, D18S14 (2005).
Klüser, L., Martynenko, D. & Holzer-Popp, T. Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI. Atmos. Meas. Tech. 4, 757–773 (2011).
Peyridieu, S. et al. Characterisation of dust aerosols in the infrared from IASI and comparison with PARASOL, MODIS, MISR, CALIOP, and AERONET observations. Atmos. Chem. Phys. 13, 6065–6082 (2013).
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).
Sun, S. W., Fang, Y., Zu, Y. C., Liu, L. & Li, K. P. Increased occurrences of early Indian Ocean Dipole under global warming. Sci. Adv. 8, eadd6025 (2022).
Benedict, J. J., Pritchard, M. S. & Collins, W. D. Sensitivity of MJO propagation to a robust positive Indian Ocean dipole event in the superparameterized CAM. J. Adv. Model. Earth Syst. 7, 1901–1917 (2015).
Chen, G. W., Ling, J., Zhang, R. W., Xiao, Z. N. & Li, C. Y. The MJO from CMIP5 to CMIP6: perspectives from tracking MJO precipitation. Geophys. Res. Lett. 49 e2021GL095241 (2022).
Karlsson, K. G. et al. CLARA-A3: The third edition of the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023. Earth Syst. Sci. Data 15, 4901–4926 (2023).
Global Modeling and Assimilation Office (GMAO) MERRA-2 tavgM_2d_rad_Nx: 2d,Monthly mean,Time-Averaged,Single-Level,Assimilation,Radiation Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) (2015).
Global Modeling and Assimilation Office (GMAO) MERRA-2 instM_3d_ana_Np: 3d,Monthly mean,Instantaneous,Pressure-Level,Analysis,Analyzed Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) (2015).
Copernicus Climate Change Service, Climate Data Store, ORAS5 global ocean reanalysis monthly data from 1958 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (2021).
Holland, M. M. et al. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model. Geosci. Model Dev. 17, 1585–1602 (2024).
Vrac, M., Thao, S. & Yiou, P. Changes in temperature-precipitation correlations over Europe: are climate models reliable? Clim. Dyn. 60, 2713–2733 (2023).
Maehara, T. & Murota, K. Simultaneous singular value decomposition. Linear Algebra Appl. 435, 106–116 (2011).
Vanloan, C. F. Generalizing singular value decomposition. Siam J. Numer. Anal. 13, 76–83 (1976).
Zarekarizi, M., Rana, A. & Moradkhani, H. Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA. Clim. Dyn. 50, 4519–4537 (2018).
Zhou, H., Zhu, J. J., Xiao, H. & Wang, X. K. Singular value decomposition (SVD) based correlation analysis of climatic factors and extreme precipitation in Hunan Province, China, during 1960-2009. J. Water Clim. Change 12, 3602–3616 (2021).
Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).
Bitz, C. M. et al. Climate sensitivity of the community climate system model, version 4. J. Clim. 25, 3053–3070 (2012).
Zender, C. S., Bian, H. S. & Newman, D. Mineral dust entrainment and deposition (DEAD) model: description and 1990s dust climatology. J. Geophys. Res. Atmos. 108, AAC8-1 (2003).
Neale, R. B. et al. Description of the NCAR Community Atmosphere Model (CAM 4.0). 207 (2024).
DeFlorio, M. J. et al. Interannual modulation of subtropical Atlantic boreal summer dust variability by ENSO. Clim. Dyn. 46, 585–599 (2016).
Kok, J. F., Albani, S., Mahowald, N. M. & Ward, D. S. An improved dust emission model - Part 2: evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmos. Chem. Phys. 14, 13043–13061 (2014).
Wu, C. L. et al. A process-oriented evaluation of dust emission parameterizations in CESM: Simulation of a typical severe dust storm in East Asia. J. Adv. Model. Earth Syst. 8, 1432–1452 (2016).
Yeager, S. G. et al. Predicting near-term changes in the Earth system: a large ensemble of initialized decadal prediction simulations using the Community Earth System Model. Bull. Am. Meteorol. Soc. 99, 1867–1886 (2018).
Xie, X. N. et al. Modeling east asian dust and its radiative feedbacks in CAM4-BAM. J. Geophys. Res. Atmos. 123, 1079–1096 (2018).
Ackerley, D., Chadwick, R., Dommenget, D. & Petrelli, P. An ensemble of AMIP simulations with prescribed land surface temperatures. Geosci. Model Dev. 11, 3865–3881 (2018).
Hwang, Y. T., Xie, S. P., Deser, C. & Kang, S. M. Connecting tropical climate change with Southern Ocean heat uptake. Geophys. Res. Lett. 44, 9449–9457 (2017).
Kang, S. M. et al. Walker circulation response to extratropical radiative forcing. Sci. Adv. 6, eabd3021 (2020).
Acknowledgements
This study is funded by the National Natural Science Foundation of China (NSFC, Grants No.42425503, J.L.) and the Peking University – BHP Carbon and Climate Wei-Ming PhD Scholars Program (Program Number: WM202401, G.L.).
Author information
Authors and Affiliations
Contributions
G.L. and J.L. conceived the study. G.L., X.W., and Y.D. gathered the data. G.L., S.X., X.W., and Y.D. developed the methodology. S.X., J.E.H., and J.L. were responsible for the supervision. G.L., J.L. wrote the original draft. All authors reviewed and edited the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Ashok Gupta and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Liu, G., Xie, SP., Hansen, J.E. et al. Middle East dust as an important external driver of the Indian Ocean Dipole. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68842-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68842-1