Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
The representation of omitted sounds in the mouse auditory cortex
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 28 January 2026

The representation of omitted sounds in the mouse auditory cortex

  • Janek Peters1 na1,
  • Zhongnan Cai1 na1,
  • Maxime van Veghel1,
  • Andreas Knoben  ORCID: orcid.org/0000-0001-7636-32441,
  • Maikel Simon1,
  • Samuel Arends1,
  • Francesco Paolo Battaglia  ORCID: orcid.org/0000-0003-3715-88751 &
  • …
  • Bernhard Englitz  ORCID: orcid.org/0000-0001-9106-03561 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cortex
  • Neural encoding
  • Sensory processing

Abstract

Humans and animals use predictions to optimize their behavior, however, the underlying neuronal implementation remains elusive. We address this using omitted sounds on the macro- and microscale of the auditory cortex of female, normal hearing mice using high-speed imaging. Neuronal responses to the omission of expected sounds were time-locked to expected stimulus onset, localized to layer 1-4 of higher auditory area (Temporal Association Area, TeA), and continued to rise until the following stimulus. The omission responses differed from offset and deviant responses in their temporal shape, size and spatial localization. Omissions and sequence statistics correlated with behavioral changes by timed pupil dilation and rapid facial motions. While stimulus responses showed partial entrainment, omission responses maintained a distinct, unentrained shape. The localized omission response in TeA is consistent with a hierarchical organization of predictive processing. However, the continued rise suggests an integrated, absolute prediction error, instead of a direct representation of prediction or prediction error, which would terminate with the omission.

Similar content being viewed by others

Hearing and early life adversity: effects of developmental stress on sensory processing

Article Open access 21 August 2025

Single-unit data for sensory neuroscience: Responses from the auditory nerve of young-adult and aging gerbils

Article Open access 22 April 2024

Neural circuits and behavioral pathways linking hearing loss to affective dysregulation in older adults

Article 14 May 2021

Data availability

The neural and video data generated in this study, as well as all files necessary for the creation of all figures, have been deposited in the open-access Radboud Repository (doi: 10.34973/e6ph-q277) in a compressed (i.e., preprocessed) format. Source Data for each figure is organized under Repository/Source Data/FigureName/[..]. For more details on data structure, refer to the README.txt file in the base directory of the repository. The raw neural and video datasets were too large for online storage, but will be made available upon request to the corresponding author.

Code availability

All code used for stimulus generation, data acquisition, preprocessing, data analysis, and figure plotting is also made available via the same Radboud Repository as the Data, fixed from the time of publication (doi: 10.34973/e6ph-q277). Inside /Code/, we provide code for the creation of each figure separately under the subfolder /Figures/. Subfolders inside /Figures/ are structured per Figure, according to the format ‘Figure_X_ShortTitle’. For more details on code structure, refer to the README.txt file in the base directory of the repository.

References

  1. Simon, J. R. & Craft, J. L. The effect of prediction accuracy on choice reaction time. Mem. Cogn. 17, 503–508 (1989).

    Google Scholar 

  2. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Google Scholar 

  3. Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B Biol. Sci. 360, 815–836 (2005).

    Google Scholar 

  4. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    Google Scholar 

  5. Spratling, M. W. A review of predictive coding algorithms. Brain Cogn. 112, 92–97 (2017).

    Google Scholar 

  6. Heilbron, M. & Chait, M. Great expectations: is there evidence for predictive coding in auditory cortex?. Neuroscience 389, 54–73 (2018).

    Google Scholar 

  7. Mikulasch, F. A., Rudelt, L., Wibral, M. & Priesemann, V. Where is the error? Hierarchical predictive coding through dendritic error computation. Trends Neurosci. 46, 45–59 (2023).

    Google Scholar 

  8. Näätänen, R., Paavilainen, P., Rinne, T. & Alho, K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin. Neurophysiol. 118, 2544–2590 (2007).

    Google Scholar 

  9. Rosburg, T. et al. Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy. Brain 128, 819–828 (2005).

    Google Scholar 

  10. Garrido, M. I., Kilner, J. M., Stephan, K. E. & Friston, K. J. The mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol. 120, 453–463 (2009).

    Google Scholar 

  11. Phillips, H. N. et al. Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography. Cortex 82, 192–205 (2016).

    Google Scholar 

  12. Awwad, B., Jankowski, M. M., Polterovich, A., Bashari, S. & Nelken, I. Extensive representation of sensory deviance in the responses to auditory gaps in unanesthetized rats. Curr. Biol. 33, 3024–3030.e3 (2023).

    Google Scholar 

  13. Nelken, I. Stimulus-specific adaptation and deviance detection in the auditory system: experiments and models. Biol. Cybern. 108, 655–663 (2014).

    Google Scholar 

  14. Parras, G. G. et al. Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nat. Commun. 8, 2148 (2017).

    Google Scholar 

  15. Parras, G. G., Casado-Román, L., Schröger, E. & Malmierca, M. S. The posterior auditory field is the chief generator of prediction error signals in the auditory cortex. NeuroImage 242, 118446 (2021).

    Google Scholar 

  16. Ulanovsky, N., Las, L. & Nelken, I. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 6, 391–398 (2003).

    Google Scholar 

  17. Yang, T. et al. Deviance detection in sound frequency in simple and complex sounds in urethane-anesthetized rats. Hear. Res. 399, 107814 (2021).

    Google Scholar 

  18. Obara, K. et al. Change detection in the primate auditory cortex through feedback of prediction error signals. Nat. Commun. 14, 6981 (2023).

    Google Scholar 

  19. Valerio, P., Rechenmann, J., Joshi, S., De Franceschi, G. & Barkat, T. R. Sequential maturation of stimulus-specific adaptation in the mouse lemniscal auditory system. Sci. Adv. 10, eadi7624 (2024).

    Google Scholar 

  20. Yabe, H. et al. Temporal window of integration of auditory information in the human brain. Psychophysiology 35, 615–619 (1998).

    Google Scholar 

  21. Wacongne, C. et al. Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc. Natl. Acad. Sci. USA 108, 20754–20759 (2011).

    Google Scholar 

  22. Wacongne, C., Changeux, J.-P. & Dehaene, S. A neuronal model of predictive coding accounting for the mismatch negativity. J. Neurosci. 32, 3665–3678 (2012).

    Google Scholar 

  23. Dercksen, T. T., Widmann, A., Schröger, E. & Wetzel, N. Omission related brain responses reflect specific and unspecific action-effect couplings. NeuroImage 215, 116840 (2020).

    Google Scholar 

  24. Latimer, K. W. et al. Multiple timescales account for adaptive responses across sensory cortices. J. Neurosci. 39, 10019–10033 (2019).

    Google Scholar 

  25. Lao-Rodríguez, A. B. et al. Neuronal responses to omitted tones in the auditory brain: a neuronal correlate for predictive coding. Sci. Adv. 9, eabq8657 (2023).

    Google Scholar 

  26. Yaron, A. et al. Auditory cortex neurons that encode negative prediction errors respond to omissions of sounds in a predictable sequence. PLoS Biol. 23, e3003242 (2025).

    Google Scholar 

  27. Auksztulewicz, R., Rajendran, V. G., Peng, F., Schnupp, J. W. H. & Harper, N. S. Omission responses in local field potentials in rat auditory cortex. BMC Biol. 21, 130 (2023).

    Google Scholar 

  28. Li, J. et al. Primary auditory cortex is required for anticipatory motor response. Cereb. Cortex 27, 3254–3271 (2017).

    Google Scholar 

  29. Wang, M. et al. Frequency selectivity of echo responses in the mouse primary auditory cortex. Sci. Rep. 8, 49 (2018).

    Google Scholar 

  30. Farley, B. J., Quirk, M. C., Doherty, J. J. & Christian, E. P. Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J. Neurosci. 30, 16475–16484 (2010).

    Google Scholar 

  31. Taaseh, N., Yaron, A. & Nelken, I. Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS ONE 6, e23369 (2011).

    Google Scholar 

  32. Nieto-Diego, J. & Malmierca, M. S. Topographic distribution of stimulus-specific adaptation across auditory cortical fields in the anesthetized rat. PLoS Biol. 14, e1002397 (2016).

    Google Scholar 

  33. Chen, T.-W. et al. Ultra-sensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Google Scholar 

  34. Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS ONE 9, e108697 (2014).

    Google Scholar 

  35. Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891 (2023).

    Google Scholar 

  36. Romero, S. et al. Cellular and widefield imaging of sound frequency organization in primary and higher order fields of the mouse auditory cortex. Cereb. Cortex 30, 1603–1622 (2020).

    Google Scholar 

  37. Feigin, L., Tasaka, G., Maor, I. & Mizrahi, A. Sparse coding in temporal association cortex improves complex sound discriminability. J. Neurosci. 41, 7048–7064 (2021).

    Google Scholar 

  38. Kanold, P. O., Nelken, I. & Polley, D. B. Local versus global scales of organization in auditory cortex. Trends Neurosci. 37, 502–510 (2014).

    Google Scholar 

  39. Tsukano, H. et al. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain. Sci. Rep. 6, 22315 (2016).

    Google Scholar 

  40. Calhoun, G., Chen, C.-T. & Kanold, P. O. Bilateral widefield calcium imaging reveals circuit asymmetries and lateralized functional activation of the mouse auditory cortex. Proc. Natl. Acad. Sci. USA 120, e2219340120 (2023).

    Google Scholar 

  41. Bjerke, I. E., Schlegel, U., Puchades, M., Bjaalie, J. G. & Leergaard, T. The Mouse Brain in Stereotaxic Coordinates Vol. 4 (Elsevier, 1982).

  42. Waters, J. Sources of widefield fluorescence from the brain. eLife 9, e59841 (2020).

    Google Scholar 

  43. Vezoli, J. et al. Cortical hierarchy, dual counterstream architecture and the importance of top-down generative networks. NeuroImage 225, 117479 (2021).

    Google Scholar 

  44. Hamm, J. P., Shymkiv, Y., Han, S., Yang, W. & Yuste, R. Cortical ensembles selective for context. Proc. Natl. Acad. Sci. USA 118, e2026179118 (2021).

    Google Scholar 

  45. Chang, M. & Kawai, H. D. A characterization of laminar architecture in mouse primary auditory cortex. Brain Struct. Funct. 223, 4187–4209 (2018).

    Google Scholar 

  46. McGinley, M. J., David, S. V. & McCormick, D. A. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87, 179–192 (2015).

    Google Scholar 

  47. Clayton, K. K. et al. Sound elicits stereotyped facial movements that provide a sensitive index of hearing abilities in mice. Curr. Biol. 34, 1605–1620.e5 (2024).

    Google Scholar 

  48. Alishbayli, A., Przewrocki, K., Heumen, P. van & Englitz, B. Neural integration of acoustic statistics enables detecting acoustic targets in noise. Preprint at https://doi.org/10.1101/2025.05.29.656794 (2025).

  49. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    Google Scholar 

  50. Sołyga, M. & Barkat, T. R. Distinct processing of tone offset in two primary auditory cortices. Sci. Rep. 9, 9581 (2019).

    Google Scholar 

  51. Olsen, T. & Hasenstaub, A. R. Offset responses in the auditory cortex show unique history dependence. J. Neurosci. 42, 7370–7385 (2022).

    Google Scholar 

  52. Winkler, I., Karmos, G. & Näätänen, R. Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Res. 742, 239–252 (1996).

    Google Scholar 

  53. Lieder, F., Stephan, K. E., Daunizeau, J., Garrido, M. I. & Friston, K. J. A neurocomputational model of the mismatch negativity. PLoS Comput. Biol. 9, e1003288 (2013).

    Google Scholar 

  54. Jalewa, J., Todd, J., Michie, P. T., Hodgson, D. M. & Harms, L. Contextualised processing of stimuli modulates auditory mismatch responses in the rat. Clin. EEG Neurosci. 56, 35–45 (2025).

    Google Scholar 

  55. Will, U. & Berg, E. Brain wave synchronization and entrainment to periodic acoustic stimuli. Neurosci. Lett. 424, 55–60 (2007).

    Google Scholar 

  56. Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I. & Schroeder, C. E. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008).

    Google Scholar 

  57. Henao, D., Navarrete, M., Valderrama, M. & Le Van Quyen, M. Entrainment and synchronization of brain oscillations to auditory stimulations. Neurosci. Res. 156, 271–278 (2020).

    Google Scholar 

  58. Bäuerle, P., Behrens, W., von der, Kössl, M. & Gaese, B. H. Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J. Neurosci. 31, 9708–9722 (2011).

    Google Scholar 

  59. Bialek, W., Nemenman, I. & Tishby, N. Predictability, complexity and learning. Neural Computation 13, 2409–2463 (2001).

  60. Singer, Y. et al. Sensory cortex is optimized for prediction of future input. eLife 7, e31557 (2018).

    Google Scholar 

  61. Singer, Y., Taylor, L., Willmore, B. D., King, A. J. & Harper, N. S. Hierarchical temporal prediction captures motion processing along the visual pathway. eLife 12, e52599 (2023).

    Google Scholar 

  62. Salisbury, D. F. Finding the missing stimulus mismatch negativity (MMN): emitted MMN to violations of an auditory gestalt. Psychophysiology 49, 544–548 (2012).

    Google Scholar 

  63. Horváth, J., Müller, D., Weise, A. & Schröger, E. Omission mismatch negativity builds up late. Neuroreport 21, 537–541 (2010).

    Google Scholar 

  64. O’Connell, R. G., Dockree, P. M. & Kelly, S. P. A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat. Neurosci. 15, 1729–1735 (2012).

    Google Scholar 

  65. Boubenec, Y., Lawlor, J., Górska, U., Shamma, S. & Englitz, B. Detecting changes in dynamic and complex acoustic environments. eLife 6, e24910 (2017).

    Google Scholar 

  66. Polterovich, A., Jankowski, M. M. & Nelken, I. Deviance sensitivity in the auditory cortex of freely moving rats. PLoS ONE 13, e0197678 (2018).

    Google Scholar 

  67. Tasaka, G.-I., Maggi, C., Taha, E. & Mizrahi, A. The local and long-range input landscape of inhibitory neurons in mouse auditory cortex. J. Comp. Neurol. 531, 502–514 (2023).

    Google Scholar 

  68. Asokan, M. M., Watanabe, Y., Kimchi, E. Y. & Polley, D. B. Potentiation of cholinergic and corticofugal inputs to the lateral amygdala in threat learning. Cell Rep. 42, 113167 (2023).

    Google Scholar 

  69. Benavidez, N. L. et al. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun. 12, 4004 (2021).

    Google Scholar 

  70. Tasaka, G.-I. et al. The temporal association cortex plays a key role in auditory-driven maternal plasticity. Neuron 107, 566–579.e7 (2020).

    Google Scholar 

  71. Lehmann, A., Arias, D. J. & Schönwiesner, M. Tracing the neural basis of auditory entrainment. Neuroscience 337, 306–314 (2016).

    Google Scholar 

  72. Jamali, S. et al. Parallel mechanisms signal a hierarchy of sequence structure violations in the auditory cortex. eLife 13, RP102702 (2024).

  73. Westerberg, J. A. et al. Stimulus history, not expectation, drives sensory prediction errors in mammalian cortex. Preprint at https://doi.org/10.1101/2024.10.02.616378 (2024).

  74. Hauswald, A., Benz, K. R., Hartmann, T., Demarchi, G. & Weisz, N. Carrier-frequency specific omission-related neural activity in ordered sound sequences is independent of omission-predictability. Eur. J. Neurosci. 60, 3812–3820 (2024).

    Google Scholar 

  75. Phillips, D. P. Temporal response features of cat auditory cortex neurons contributing to sensitivity to tones delivered in the presence of continuous noise. Hear. Res. 19, 253–268 (1985).

    Google Scholar 

  76. Suga, N. Single unit activity in cochlear nucleus and inferior colliculus of echo-locating bats. J. Physiol. 172, 449–474 (1964).

    Google Scholar 

  77. Dehmel, S., Kopp-Scheinpflug, C., Dörrscheidt, G. J. & Rübsamen, R. Electrophysiological characterization of the superior paraolivary nucleus in the Mongolian gerbil. Hear. Res. 172, 18–36 (2002).

    Google Scholar 

  78. Kulesza, R. J., Spirou, G. A. & Berrebi, A. S. Physiological response properties of neurons in the superior paraolivary nucleus of the rat. J. Neurophysiol. 89, 2299–2312 (2003).

    Google Scholar 

  79. Bondanelli, G., Deneux, T., Bathellier, B. & Ostojic, S. Network dynamics underlying OFF responses in the auditory cortex. eLife 10, e53151 (2021).

    Google Scholar 

  80. Notbohm, A., Kurths, J. & Herrmann, C. S. Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses. Front. Hum. Neurosci. 10, 10 (2016).

    Google Scholar 

  81. Ross, B., Dobri, S., Jamali, S. & Bartel, L. Entrainment of somatosensory beta and gamma oscillations accompany improvement in tactile acuity after periodic and aperiodic repetitive sensory stimulation. Int. J. Psychophysiol. 177, 11–26 (2022).

    Google Scholar 

  82. Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95, 5323–5328 (1998).

    Google Scholar 

  83. Otero, M., Prado-Gutiérrez, P., Weinstein, A., Escobar, M.-J. & El-Deredy, W. Persistence of EEG alpha entrainment depends on stimulus phasE AT Offset. Front. Hum. Neurosci. 14, 139 (2020).

    Google Scholar 

  84. Gallina, J., Marsicano, G., Romei, V. & Bertini, C. Electrophysiological and behavioral effects of alpha-band sensory entrainment: neural mechanisms and clinical applications. Biomedicines 11, 1399 (2023).

    Google Scholar 

  85. Lotter, W., Kreiman, G. & Cox, D. Deep predictive coding networks for video prediction and unsupervised learning. Preprint at https://doi.org/10.48550/arXiv.1605.08104 (2017).

  86. Jiang, L. P. & Rao, R. P. N. Dynamic predictive coding: a model of hierarchical sequence learning and prediction in the neocortex. PLoS Comput. Biol. 20, e1011801 (2024).

    Google Scholar 

  87. Bastos, A. M., Lundqvist, M., Waite, A. S., Kopell, N. & Miller, E. K. Layer and rhythm specificity for predictive routing. Proc. Natl. Acad. Sci. USA 117, 31459–31469 (2020).

    Google Scholar 

  88. Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018).

    Google Scholar 

  89. Barlow, H. B. Sensory Communication (ed. Rosenblith, W. A.). 217–234 (MIT Press, Cambridge, MA, 1961).

  90. Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1, 304–309 (1998).

    Google Scholar 

  91. Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525, 243–246 (2015).

    Google Scholar 

  92. Huang, C., Zeldenrust, F. & Celikel, T. Cortical representation of touch in silico. Neuroinformatics 20, 1013–1039 (2022).

    Google Scholar 

  93. Taylor, L., Zenke, F., King, A. J. & Harper, N. S. Temporal prediction captures key differences between spiking excitatory and inhibitory V1 neurons. Preprint at https://doi.org/10.1101/2024.05.12.593763 (2024).

  94. Fritz, J. B., Elhilali, M. & Shamma, S. A. Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. J. Neurosci. 25, 7623–7635 (2005).

    Google Scholar 

  95. Grødem, S. et al. An updated suite of viral vectors for in vivo calcium imaging using intracerebral and retro-orbital injections in male mice. Nat. Commun. 14, 608 (2023).

    Google Scholar 

  96. Wang, M., Misgeld, T. & Brill, M. S. Neural labeling and manipulation by neonatal intraventricular viral injection in mice. STAR Protoc. 3, 101081 (2022).

    Google Scholar 

  97. Wasala, L. P., Hakim, C. H., Yue, Y., Yang, N. N. & Duan, D. Systemic delivery of adeno-associated viral vectors in mice and dogs. Methods Mol. Biol. 1937, 281–294 (2019).

    Google Scholar 

  98. Wang, T. et al. jGCaMP8 transgenic mice. jGCaMP8 transgenic mice. Janelia Research Campus. https://janelia.figshare.com/articles/dataset/Untitled_Item_b_jGCaMP8_transgenic_mice_b_/24565837/3?file=43777884 (2023).

  99. Natan, R. G., Rao, W. & Geffen, M. N. Cortical interneurons differentially shape frequency tuning following adaptation. Cell Rep. 21, 878–890 (2017).

    Google Scholar 

  100. Studer, F. & Barkat, T. R. Inhibition in the auditory cortex. Neurosci. Biobehav. Rev. 132, 61–75 (2022).

    Google Scholar 

  101. Tsukano, H., Garcia, M. M., Dandu, P. R. & Kato, H. K. Predictive filtering of sensory response via orbitofrontal top-down input. Preprint at https://doi.org/10.1101/2024.09.17.613562 (2024).

  102. Lesicko, A. M., Angeloni, C. F., Blackwell, J. M., De Biasi, M. & Geffen, M. N. Corticofugal regulation of predictive coding. eLife 11, e73289 (2022).

    Google Scholar 

  103. Zheng, Q. Y., Johnson, K. R. & Erway, L. C. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear. Res. 130, 94–107 (1999).

    Google Scholar 

  104. Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: Flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    Google Scholar 

  105. Englitz, B. et al. Multilinear models of single cell responses in the medial nucleus of the trapezoid body. Netw. Comput. Neural Syst. 21, 91–124 (2010).

    Google Scholar 

  106. Anderson, L. A., Christianson, G. B. & Linden, J. F. Stimulus-specific adaptation occurs in the auditory thalamus. J. Neurosci. 29, 7359–7363 (2009).

    Google Scholar 

  107. Antunes, F. M., Nelken, I., Covey, E. & Malmierca, M. S. Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS ONE 5, e14071 (2010).

    Google Scholar 

  108. Fishman, Y. I. & Steinschneider, M. Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation?. J. Neurosci. 32, 15747–15758 (2012).

    Google Scholar 

  109. Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    Google Scholar 

  110. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at https://doi.org/10.1101/061507 (2017).

  111. Narayanan, D. P., Tsukano, H., Kline, A. M., Onodera, K. & Kato, H. K. Biological constraints on stereotaxic targeting of functionally-defined cortical areas. Cereb. Cortex 33, 3293–3310 (2023).

    Google Scholar 

  112. Sawatari, H. et al. Identification and characterization of an insular auditory field in mice. Eur. J. Neurosci. 34, 1944–1952 (2011).

    Google Scholar 

  113. Miller, J. A. et al. Neuropathological and transcriptomic characteristics of the aged brain. eLife 6, e31126 (2017).

    Google Scholar 

  114. Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022).

    Google Scholar 

  115. Syeda, A. et al. Facemap: a framework for modeling neural activity based on orofacial tracking. Nat. Neurosci. 27, 187–195 (2024).

  116. Aschauer, D. F., Kreuz, S. & Rumpel, S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS ONE 8, e76310 (2013).

    Google Scholar 

  117. Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Elsevier, 1985).

Download references

Acknowledgements

We would like to thank Jeroen Bos and the support staff of INSS for their assistance during the development of the experimental setup. We would like to thank Floris de Lange and Uta Noppeney for helpful discussions and feedback on earlier versions of the manuscript. We would like to thank Daniel Polley, Ross Williamson, Bruno Pichler, Yannick Goullam-Houssen, Brice Batthelier, and Rémi Proville for initial discussions on the experimental setup design and Roberta Müller for assistance with the illustrations of experimental setups. Further, we would like to thank Gesa Berretz, Karol Przewrocki, and Artoghrul Alishbayli for insightful discussions. Bernhard Englitz acknowledges funding from a VIDI grant (016.VIDI.189.052) and Zhongnan Cai from an internal grant at the Donders Center for Neuroscience. Bernhard Englitz also acknowledges valuable discussions at the Kavli Conference on Statistical Learning in the Brain at UCSB, supported by NSF Grant No. PHY-1748958 and the Gordon and Betty Moore Foundation Grant No. 2919.02 to the Kavli Institute for Theoretical Physics (KITP). Francesco P. Battaglia acknowledges funding from the European Research Council (ERC) Advanced Grant “REPLAY-DMN” (grant agreement no. 833964).

Author information

Author notes
  1. These authors contributed equally: Janek Peters, Zhongnan Cai.

Authors and Affiliations

  1. Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands

    Janek Peters, Zhongnan Cai, Maxime van Veghel, Andreas Knoben, Maikel Simon, Samuel Arends, Francesco Paolo Battaglia & Bernhard Englitz

Authors
  1. Janek Peters
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhongnan Cai
    View author publications

    Search author on:PubMed Google Scholar

  3. Maxime van Veghel
    View author publications

    Search author on:PubMed Google Scholar

  4. Andreas Knoben
    View author publications

    Search author on:PubMed Google Scholar

  5. Maikel Simon
    View author publications

    Search author on:PubMed Google Scholar

  6. Samuel Arends
    View author publications

    Search author on:PubMed Google Scholar

  7. Francesco Paolo Battaglia
    View author publications

    Search author on:PubMed Google Scholar

  8. Bernhard Englitz
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Bernhard Englitz acquired funding, conceived and implemented the experiments, managed and supervised the project, and wrote the manuscript. Janek Peters developed, managed, and performed the surgeries and imaging experiments, wrote analyses and generalized analysis tools, co-developed and managed the code pipeline, supervised students, produced figures, and co-wrote the manuscript. Zhongnan Cai co-developed the analysis pipeline, in particular, all aspects of 2P data processing and visualization, and contributed significantly to manuscript writing. Maxime van Veghel developed pilot analyses for the omission control paradigms. Andreas Knoben implemented facial and pupil tracking and piloted analysis. Maikel Simon acquired imaging data. Samuel Arends assisted with facial motion tracking and pipeline improvements. Francesco P. Battaglia acquired funding for and managed the acquisition as well as the assembly of the 2p microscope. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bernhard Englitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jennifer Linden and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, J., Cai, Z., van Veghel, M. et al. The representation of omitted sounds in the mouse auditory cortex. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68847-w

Download citation

  • Received: 28 February 2025

  • Accepted: 19 January 2026

  • Published: 28 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68847-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing