Abstract
Humans and animals use predictions to optimize their behavior, however, the underlying neuronal implementation remains elusive. We address this using omitted sounds on the macro- and microscale of the auditory cortex of female, normal hearing mice using high-speed imaging. Neuronal responses to the omission of expected sounds were time-locked to expected stimulus onset, localized to layer 1-4 of higher auditory area (Temporal Association Area, TeA), and continued to rise until the following stimulus. The omission responses differed from offset and deviant responses in their temporal shape, size and spatial localization. Omissions and sequence statistics correlated with behavioral changes by timed pupil dilation and rapid facial motions. While stimulus responses showed partial entrainment, omission responses maintained a distinct, unentrained shape. The localized omission response in TeA is consistent with a hierarchical organization of predictive processing. However, the continued rise suggests an integrated, absolute prediction error, instead of a direct representation of prediction or prediction error, which would terminate with the omission.
Similar content being viewed by others
Data availability
The neural and video data generated in this study, as well as all files necessary for the creation of all figures, have been deposited in the open-access Radboud Repository (doi: 10.34973/e6ph-q277) in a compressed (i.e., preprocessed) format. Source Data for each figure is organized under Repository/Source Data/FigureName/[..]. For more details on data structure, refer to the README.txt file in the base directory of the repository. The raw neural and video datasets were too large for online storage, but will be made available upon request to the corresponding author.
Code availability
All code used for stimulus generation, data acquisition, preprocessing, data analysis, and figure plotting is also made available via the same Radboud Repository as the Data, fixed from the time of publication (doi: 10.34973/e6ph-q277). Inside /Code/, we provide code for the creation of each figure separately under the subfolder /Figures/. Subfolders inside /Figures/ are structured per Figure, according to the format ‘Figure_X_ShortTitle’. For more details on code structure, refer to the README.txt file in the base directory of the repository.
References
Simon, J. R. & Craft, J. L. The effect of prediction accuracy on choice reaction time. Mem. Cogn. 17, 503–508 (1989).
Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).
Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B Biol. Sci. 360, 815–836 (2005).
Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).
Spratling, M. W. A review of predictive coding algorithms. Brain Cogn. 112, 92–97 (2017).
Heilbron, M. & Chait, M. Great expectations: is there evidence for predictive coding in auditory cortex?. Neuroscience 389, 54–73 (2018).
Mikulasch, F. A., Rudelt, L., Wibral, M. & Priesemann, V. Where is the error? Hierarchical predictive coding through dendritic error computation. Trends Neurosci. 46, 45–59 (2023).
Näätänen, R., Paavilainen, P., Rinne, T. & Alho, K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin. Neurophysiol. 118, 2544–2590 (2007).
Rosburg, T. et al. Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy. Brain 128, 819–828 (2005).
Garrido, M. I., Kilner, J. M., Stephan, K. E. & Friston, K. J. The mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol. 120, 453–463 (2009).
Phillips, H. N. et al. Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography. Cortex 82, 192–205 (2016).
Awwad, B., Jankowski, M. M., Polterovich, A., Bashari, S. & Nelken, I. Extensive representation of sensory deviance in the responses to auditory gaps in unanesthetized rats. Curr. Biol. 33, 3024–3030.e3 (2023).
Nelken, I. Stimulus-specific adaptation and deviance detection in the auditory system: experiments and models. Biol. Cybern. 108, 655–663 (2014).
Parras, G. G. et al. Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nat. Commun. 8, 2148 (2017).
Parras, G. G., Casado-Román, L., Schröger, E. & Malmierca, M. S. The posterior auditory field is the chief generator of prediction error signals in the auditory cortex. NeuroImage 242, 118446 (2021).
Ulanovsky, N., Las, L. & Nelken, I. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 6, 391–398 (2003).
Yang, T. et al. Deviance detection in sound frequency in simple and complex sounds in urethane-anesthetized rats. Hear. Res. 399, 107814 (2021).
Obara, K. et al. Change detection in the primate auditory cortex through feedback of prediction error signals. Nat. Commun. 14, 6981 (2023).
Valerio, P., Rechenmann, J., Joshi, S., De Franceschi, G. & Barkat, T. R. Sequential maturation of stimulus-specific adaptation in the mouse lemniscal auditory system. Sci. Adv. 10, eadi7624 (2024).
Yabe, H. et al. Temporal window of integration of auditory information in the human brain. Psychophysiology 35, 615–619 (1998).
Wacongne, C. et al. Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc. Natl. Acad. Sci. USA 108, 20754–20759 (2011).
Wacongne, C., Changeux, J.-P. & Dehaene, S. A neuronal model of predictive coding accounting for the mismatch negativity. J. Neurosci. 32, 3665–3678 (2012).
Dercksen, T. T., Widmann, A., Schröger, E. & Wetzel, N. Omission related brain responses reflect specific and unspecific action-effect couplings. NeuroImage 215, 116840 (2020).
Latimer, K. W. et al. Multiple timescales account for adaptive responses across sensory cortices. J. Neurosci. 39, 10019–10033 (2019).
Lao-Rodríguez, A. B. et al. Neuronal responses to omitted tones in the auditory brain: a neuronal correlate for predictive coding. Sci. Adv. 9, eabq8657 (2023).
Yaron, A. et al. Auditory cortex neurons that encode negative prediction errors respond to omissions of sounds in a predictable sequence. PLoS Biol. 23, e3003242 (2025).
Auksztulewicz, R., Rajendran, V. G., Peng, F., Schnupp, J. W. H. & Harper, N. S. Omission responses in local field potentials in rat auditory cortex. BMC Biol. 21, 130 (2023).
Li, J. et al. Primary auditory cortex is required for anticipatory motor response. Cereb. Cortex 27, 3254–3271 (2017).
Wang, M. et al. Frequency selectivity of echo responses in the mouse primary auditory cortex. Sci. Rep. 8, 49 (2018).
Farley, B. J., Quirk, M. C., Doherty, J. J. & Christian, E. P. Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J. Neurosci. 30, 16475–16484 (2010).
Taaseh, N., Yaron, A. & Nelken, I. Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS ONE 6, e23369 (2011).
Nieto-Diego, J. & Malmierca, M. S. Topographic distribution of stimulus-specific adaptation across auditory cortical fields in the anesthetized rat. PLoS Biol. 14, e1002397 (2016).
Chen, T.-W. et al. Ultra-sensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS ONE 9, e108697 (2014).
Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891 (2023).
Romero, S. et al. Cellular and widefield imaging of sound frequency organization in primary and higher order fields of the mouse auditory cortex. Cereb. Cortex 30, 1603–1622 (2020).
Feigin, L., Tasaka, G., Maor, I. & Mizrahi, A. Sparse coding in temporal association cortex improves complex sound discriminability. J. Neurosci. 41, 7048–7064 (2021).
Kanold, P. O., Nelken, I. & Polley, D. B. Local versus global scales of organization in auditory cortex. Trends Neurosci. 37, 502–510 (2014).
Tsukano, H. et al. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain. Sci. Rep. 6, 22315 (2016).
Calhoun, G., Chen, C.-T. & Kanold, P. O. Bilateral widefield calcium imaging reveals circuit asymmetries and lateralized functional activation of the mouse auditory cortex. Proc. Natl. Acad. Sci. USA 120, e2219340120 (2023).
Bjerke, I. E., Schlegel, U., Puchades, M., Bjaalie, J. G. & Leergaard, T. The Mouse Brain in Stereotaxic Coordinates Vol. 4 (Elsevier, 1982).
Waters, J. Sources of widefield fluorescence from the brain. eLife 9, e59841 (2020).
Vezoli, J. et al. Cortical hierarchy, dual counterstream architecture and the importance of top-down generative networks. NeuroImage 225, 117479 (2021).
Hamm, J. P., Shymkiv, Y., Han, S., Yang, W. & Yuste, R. Cortical ensembles selective for context. Proc. Natl. Acad. Sci. USA 118, e2026179118 (2021).
Chang, M. & Kawai, H. D. A characterization of laminar architecture in mouse primary auditory cortex. Brain Struct. Funct. 223, 4187–4209 (2018).
McGinley, M. J., David, S. V. & McCormick, D. A. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87, 179–192 (2015).
Clayton, K. K. et al. Sound elicits stereotyped facial movements that provide a sensitive index of hearing abilities in mice. Curr. Biol. 34, 1605–1620.e5 (2024).
Alishbayli, A., Przewrocki, K., Heumen, P. van & Englitz, B. Neural integration of acoustic statistics enables detecting acoustic targets in noise. Preprint at https://doi.org/10.1101/2025.05.29.656794 (2025).
Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).
Sołyga, M. & Barkat, T. R. Distinct processing of tone offset in two primary auditory cortices. Sci. Rep. 9, 9581 (2019).
Olsen, T. & Hasenstaub, A. R. Offset responses in the auditory cortex show unique history dependence. J. Neurosci. 42, 7370–7385 (2022).
Winkler, I., Karmos, G. & Näätänen, R. Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Res. 742, 239–252 (1996).
Lieder, F., Stephan, K. E., Daunizeau, J., Garrido, M. I. & Friston, K. J. A neurocomputational model of the mismatch negativity. PLoS Comput. Biol. 9, e1003288 (2013).
Jalewa, J., Todd, J., Michie, P. T., Hodgson, D. M. & Harms, L. Contextualised processing of stimuli modulates auditory mismatch responses in the rat. Clin. EEG Neurosci. 56, 35–45 (2025).
Will, U. & Berg, E. Brain wave synchronization and entrainment to periodic acoustic stimuli. Neurosci. Lett. 424, 55–60 (2007).
Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I. & Schroeder, C. E. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008).
Henao, D., Navarrete, M., Valderrama, M. & Le Van Quyen, M. Entrainment and synchronization of brain oscillations to auditory stimulations. Neurosci. Res. 156, 271–278 (2020).
Bäuerle, P., Behrens, W., von der, Kössl, M. & Gaese, B. H. Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J. Neurosci. 31, 9708–9722 (2011).
Bialek, W., Nemenman, I. & Tishby, N. Predictability, complexity and learning. Neural Computation 13, 2409–2463 (2001).
Singer, Y. et al. Sensory cortex is optimized for prediction of future input. eLife 7, e31557 (2018).
Singer, Y., Taylor, L., Willmore, B. D., King, A. J. & Harper, N. S. Hierarchical temporal prediction captures motion processing along the visual pathway. eLife 12, e52599 (2023).
Salisbury, D. F. Finding the missing stimulus mismatch negativity (MMN): emitted MMN to violations of an auditory gestalt. Psychophysiology 49, 544–548 (2012).
Horváth, J., Müller, D., Weise, A. & Schröger, E. Omission mismatch negativity builds up late. Neuroreport 21, 537–541 (2010).
O’Connell, R. G., Dockree, P. M. & Kelly, S. P. A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat. Neurosci. 15, 1729–1735 (2012).
Boubenec, Y., Lawlor, J., Górska, U., Shamma, S. & Englitz, B. Detecting changes in dynamic and complex acoustic environments. eLife 6, e24910 (2017).
Polterovich, A., Jankowski, M. M. & Nelken, I. Deviance sensitivity in the auditory cortex of freely moving rats. PLoS ONE 13, e0197678 (2018).
Tasaka, G.-I., Maggi, C., Taha, E. & Mizrahi, A. The local and long-range input landscape of inhibitory neurons in mouse auditory cortex. J. Comp. Neurol. 531, 502–514 (2023).
Asokan, M. M., Watanabe, Y., Kimchi, E. Y. & Polley, D. B. Potentiation of cholinergic and corticofugal inputs to the lateral amygdala in threat learning. Cell Rep. 42, 113167 (2023).
Benavidez, N. L. et al. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun. 12, 4004 (2021).
Tasaka, G.-I. et al. The temporal association cortex plays a key role in auditory-driven maternal plasticity. Neuron 107, 566–579.e7 (2020).
Lehmann, A., Arias, D. J. & Schönwiesner, M. Tracing the neural basis of auditory entrainment. Neuroscience 337, 306–314 (2016).
Jamali, S. et al. Parallel mechanisms signal a hierarchy of sequence structure violations in the auditory cortex. eLife 13, RP102702 (2024).
Westerberg, J. A. et al. Stimulus history, not expectation, drives sensory prediction errors in mammalian cortex. Preprint at https://doi.org/10.1101/2024.10.02.616378 (2024).
Hauswald, A., Benz, K. R., Hartmann, T., Demarchi, G. & Weisz, N. Carrier-frequency specific omission-related neural activity in ordered sound sequences is independent of omission-predictability. Eur. J. Neurosci. 60, 3812–3820 (2024).
Phillips, D. P. Temporal response features of cat auditory cortex neurons contributing to sensitivity to tones delivered in the presence of continuous noise. Hear. Res. 19, 253–268 (1985).
Suga, N. Single unit activity in cochlear nucleus and inferior colliculus of echo-locating bats. J. Physiol. 172, 449–474 (1964).
Dehmel, S., Kopp-Scheinpflug, C., Dörrscheidt, G. J. & Rübsamen, R. Electrophysiological characterization of the superior paraolivary nucleus in the Mongolian gerbil. Hear. Res. 172, 18–36 (2002).
Kulesza, R. J., Spirou, G. A. & Berrebi, A. S. Physiological response properties of neurons in the superior paraolivary nucleus of the rat. J. Neurophysiol. 89, 2299–2312 (2003).
Bondanelli, G., Deneux, T., Bathellier, B. & Ostojic, S. Network dynamics underlying OFF responses in the auditory cortex. eLife 10, e53151 (2021).
Notbohm, A., Kurths, J. & Herrmann, C. S. Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses. Front. Hum. Neurosci. 10, 10 (2016).
Ross, B., Dobri, S., Jamali, S. & Bartel, L. Entrainment of somatosensory beta and gamma oscillations accompany improvement in tactile acuity after periodic and aperiodic repetitive sensory stimulation. Int. J. Psychophysiol. 177, 11–26 (2022).
Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95, 5323–5328 (1998).
Otero, M., Prado-Gutiérrez, P., Weinstein, A., Escobar, M.-J. & El-Deredy, W. Persistence of EEG alpha entrainment depends on stimulus phasE AT Offset. Front. Hum. Neurosci. 14, 139 (2020).
Gallina, J., Marsicano, G., Romei, V. & Bertini, C. Electrophysiological and behavioral effects of alpha-band sensory entrainment: neural mechanisms and clinical applications. Biomedicines 11, 1399 (2023).
Lotter, W., Kreiman, G. & Cox, D. Deep predictive coding networks for video prediction and unsupervised learning. Preprint at https://doi.org/10.48550/arXiv.1605.08104 (2017).
Jiang, L. P. & Rao, R. P. N. Dynamic predictive coding: a model of hierarchical sequence learning and prediction in the neocortex. PLoS Comput. Biol. 20, e1011801 (2024).
Bastos, A. M., Lundqvist, M., Waite, A. S., Kopell, N. & Miller, E. K. Layer and rhythm specificity for predictive routing. Proc. Natl. Acad. Sci. USA 117, 31459–31469 (2020).
Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018).
Barlow, H. B. Sensory Communication (ed. Rosenblith, W. A.). 217–234 (MIT Press, Cambridge, MA, 1961).
Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1, 304–309 (1998).
Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525, 243–246 (2015).
Huang, C., Zeldenrust, F. & Celikel, T. Cortical representation of touch in silico. Neuroinformatics 20, 1013–1039 (2022).
Taylor, L., Zenke, F., King, A. J. & Harper, N. S. Temporal prediction captures key differences between spiking excitatory and inhibitory V1 neurons. Preprint at https://doi.org/10.1101/2024.05.12.593763 (2024).
Fritz, J. B., Elhilali, M. & Shamma, S. A. Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. J. Neurosci. 25, 7623–7635 (2005).
Grødem, S. et al. An updated suite of viral vectors for in vivo calcium imaging using intracerebral and retro-orbital injections in male mice. Nat. Commun. 14, 608 (2023).
Wang, M., Misgeld, T. & Brill, M. S. Neural labeling and manipulation by neonatal intraventricular viral injection in mice. STAR Protoc. 3, 101081 (2022).
Wasala, L. P., Hakim, C. H., Yue, Y., Yang, N. N. & Duan, D. Systemic delivery of adeno-associated viral vectors in mice and dogs. Methods Mol. Biol. 1937, 281–294 (2019).
Wang, T. et al. jGCaMP8 transgenic mice. jGCaMP8 transgenic mice. Janelia Research Campus. https://janelia.figshare.com/articles/dataset/Untitled_Item_b_jGCaMP8_transgenic_mice_b_/24565837/3?file=43777884 (2023).
Natan, R. G., Rao, W. & Geffen, M. N. Cortical interneurons differentially shape frequency tuning following adaptation. Cell Rep. 21, 878–890 (2017).
Studer, F. & Barkat, T. R. Inhibition in the auditory cortex. Neurosci. Biobehav. Rev. 132, 61–75 (2022).
Tsukano, H., Garcia, M. M., Dandu, P. R. & Kato, H. K. Predictive filtering of sensory response via orbitofrontal top-down input. Preprint at https://doi.org/10.1101/2024.09.17.613562 (2024).
Lesicko, A. M., Angeloni, C. F., Blackwell, J. M., De Biasi, M. & Geffen, M. N. Corticofugal regulation of predictive coding. eLife 11, e73289 (2022).
Zheng, Q. Y., Johnson, K. R. & Erway, L. C. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear. Res. 130, 94–107 (1999).
Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: Flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).
Englitz, B. et al. Multilinear models of single cell responses in the medial nucleus of the trapezoid body. Netw. Comput. Neural Syst. 21, 91–124 (2010).
Anderson, L. A., Christianson, G. B. & Linden, J. F. Stimulus-specific adaptation occurs in the auditory thalamus. J. Neurosci. 29, 7359–7363 (2009).
Antunes, F. M., Nelken, I., Covey, E. & Malmierca, M. S. Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS ONE 5, e14071 (2010).
Fishman, Y. I. & Steinschneider, M. Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation?. J. Neurosci. 32, 15747–15758 (2012).
Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).
Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at https://doi.org/10.1101/061507 (2017).
Narayanan, D. P., Tsukano, H., Kline, A. M., Onodera, K. & Kato, H. K. Biological constraints on stereotaxic targeting of functionally-defined cortical areas. Cereb. Cortex 33, 3293–3310 (2023).
Sawatari, H. et al. Identification and characterization of an insular auditory field in mice. Eur. J. Neurosci. 34, 1944–1952 (2011).
Miller, J. A. et al. Neuropathological and transcriptomic characteristics of the aged brain. eLife 6, e31126 (2017).
Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022).
Syeda, A. et al. Facemap: a framework for modeling neural activity based on orofacial tracking. Nat. Neurosci. 27, 187–195 (2024).
Aschauer, D. F., Kreuz, S. & Rumpel, S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS ONE 8, e76310 (2013).
Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Elsevier, 1985).
Acknowledgements
We would like to thank Jeroen Bos and the support staff of INSS for their assistance during the development of the experimental setup. We would like to thank Floris de Lange and Uta Noppeney for helpful discussions and feedback on earlier versions of the manuscript. We would like to thank Daniel Polley, Ross Williamson, Bruno Pichler, Yannick Goullam-Houssen, Brice Batthelier, and Rémi Proville for initial discussions on the experimental setup design and Roberta Müller for assistance with the illustrations of experimental setups. Further, we would like to thank Gesa Berretz, Karol Przewrocki, and Artoghrul Alishbayli for insightful discussions. Bernhard Englitz acknowledges funding from a VIDI grant (016.VIDI.189.052) and Zhongnan Cai from an internal grant at the Donders Center for Neuroscience. Bernhard Englitz also acknowledges valuable discussions at the Kavli Conference on Statistical Learning in the Brain at UCSB, supported by NSF Grant No. PHY-1748958 and the Gordon and Betty Moore Foundation Grant No. 2919.02 to the Kavli Institute for Theoretical Physics (KITP). Francesco P. Battaglia acknowledges funding from the European Research Council (ERC) Advanced Grant “REPLAY-DMN” (grant agreement no. 833964).
Author information
Authors and Affiliations
Contributions
Bernhard Englitz acquired funding, conceived and implemented the experiments, managed and supervised the project, and wrote the manuscript. Janek Peters developed, managed, and performed the surgeries and imaging experiments, wrote analyses and generalized analysis tools, co-developed and managed the code pipeline, supervised students, produced figures, and co-wrote the manuscript. Zhongnan Cai co-developed the analysis pipeline, in particular, all aspects of 2P data processing and visualization, and contributed significantly to manuscript writing. Maxime van Veghel developed pilot analyses for the omission control paradigms. Andreas Knoben implemented facial and pupil tracking and piloted analysis. Maikel Simon acquired imaging data. Samuel Arends assisted with facial motion tracking and pipeline improvements. Francesco P. Battaglia acquired funding for and managed the acquisition as well as the assembly of the 2p microscope. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Jennifer Linden and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Peters, J., Cai, Z., van Veghel, M. et al. The representation of omitted sounds in the mouse auditory cortex. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68847-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68847-w


