Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Synthesis of poly(ester disulfide)s from S8-involved step-growth addition polymerization at ambient temperature
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 27 January 2026

Synthesis of poly(ester disulfide)s from S8-involved step-growth addition polymerization at ambient temperature

  • Yue Sun1,2,3,
  • Yuxiang Cao1,2,
  • Xiong Liu1,2,
  • Chengjian Zhang  ORCID: orcid.org/0000-0002-1249-519X1,2 &
  • …
  • Xinghong Zhang  ORCID: orcid.org/0000-0001-6543-00421,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Polymer synthesis
  • Polymerization mechanisms
  • Polymers

Abstract

Elemental sulfur (S8), an abundant petroleum byproduct, is leveraged as a linchpin monomer in an organobase-catalyzed step-growth addition polymerization with dithiols and diacrylates at ambient temperature. This method enables the scalable synthesis of poly(ester disulfide)s—featuring alternating ester and disulfide linkages—with exceptional atom economy ( > 95% yield), Mn up to 42.0 kDa, and dual functionality: biodegradable ester units and stimuli-responsive disulfides. Mechanistic studies reveal a chemoselective three-component coupling involving S8 ring-opening, disulfide anion formation, and Michael addition, quantitatively generating symmetric and asymmetric disulfides in near-equimolar ratios. Thermal and mechanical characterizations of the poly(ester disulfide)s reveal programmable properties: High thermal stability (Td,5% = 248–281 °C), tunable phase behavior (amorphous Tg = −64 °C to semicrystalline Tm = 142 °C), and reductive degradation. By overcoming traditional limitations of harsh conditions and monomer scope, this strategy establishes S8 as a versatile feedstock for functional polymers, opening avenues for dynamic materials in biomedicine and environmental remediation.

Similar content being viewed by others

Converting inorganic sulfur into degradable thermoplastics and adhesives by copolymerization with cyclic disulfides

Article Open access 08 May 2024

Synthesis of methylated phenylene sulfide polymers via bulk oxidative polymerization and their heat curing triggered by dynamic disulfide exchange

Article 21 September 2021

Precise placement of thioester bonds into sequence-controlled polymers containing ABAC-type units

Article Open access 26 February 2025

Data availability

Data supporting the findings of this study are available within the article (and its Supplementary information files). All data were available from the corresponding author upon request.

References

  1. Zheng, N., Xu, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 121, 1716–1745 (2021).

    Google Scholar 

  2. Lei, Z. et al. New advances in covalent network polymers via dynamic covalent chemistry. Chem. Rev. 124, 7829–7906 (2024).

    Google Scholar 

  3. Maes, S., Badi, N., Winne, J. M. & Du Prez, F. E. Taking dynamic covalent chemistry out of the lab and into reprocessable industrial thermosets. Nat. Rev. Chem. 9, 144–158 (2025).

    Google Scholar 

  4. Pal, S. et al. Recyclable surgical, consumer, and industrial adhesives of poly(α-lipoic acid). Science 385, 877–883 (2024).

    Google Scholar 

  5. Zhang, Q., Qu, D.-H., Feringa, B. L. & Tian, H. Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc. 144, 2022–2033 (2022).

    Google Scholar 

  6. Deng, Y. et al. Acylhydrazine-based reticular hydrogen bonds enable robust, tough, and dynamic supramolecular materials. Sci. Adv. 8, eabk3286 (2022).

    Google Scholar 

  7. Bang, E.-K., Lista, M., Sforazzini, G., Sakai, N. & Matile, S. Poly(disulfide)s. Chem. Sci. 3, 1752–1763 (2012).

    Google Scholar 

  8. Mutlu, H. et al. Sulfur chemistry in polymer and materials science. Macromol. Rapid Commun. 40, 1800650 (2019).

    Google Scholar 

  9. Machado, T. O. et al. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature 629, 1069–1074 (2024).

    Google Scholar 

  10. Zhang, X. & Waymouth, R. M. 1,2-Dithiolane-derived dynamic, covalent materials: cooperative self-assembly and reversible cross-linking. J. Am. Chem. Soc. 139, 3822–3833 (2017).

    Google Scholar 

  11. Lu, J. et al. Organ/cell-selective intracellular delivery of biologics via N-acetylated galactosamine-functionalized polydisulfide conjugates. J. Am. Chem. Soc. 146, 3974–3983 (2024).

    Google Scholar 

  12. Guo, J. et al. Synthesis of cationic cyclic oligo(disulfide)s via cyclo-depolymerization: a redox-responsive and potent antibacterial reagent. J. Am. Chem. Soc. 147, 6772–6785 (2025).

    Google Scholar 

  13. Yu, D. et al. Controllable star cationic poly(disulfide)s achieve genetically cascade catalytic therapy by delivering bifunctional fusion plasmids. Adv. Mater. 35, 2307190 (2023).

    Google Scholar 

  14. Huang, H. et al. Long-range electronic effect-promoted ring-opening polymerization of thioctic acid to produce biomimetic ionic elastomers for bioelectronics. CCS Chem. 6, 761–773 (2024).

    Google Scholar 

  15. Shi, C.-Y. et al. Robust and dynamic underwater adhesives enabled by catechol-functionalized poly(disulfides) network. Natl. Sci. Rev. 10, nwac139 (2023).

    Google Scholar 

  16. Du, T. et al. Controlled and regioselective ring-opening polymerization for poly(disulfide)s by anion-binding catalysis. J. Am. Chem. Soc. 145, 27788–27799 (2023).

    Google Scholar 

  17. Liu, Y., Jia, Y., Wu, Q. & Moore, J. S. Architecture-controlled ring-opening polymerization for dynamic covalent poly(disulfide)s. J. Am. Chem. Soc. 141, 17075–17080 (2019).

    Google Scholar 

  18. Gallizioli, C., Deglmann, P. & Plajer, A. J. Kinetically enhanced access to a dynamic polyester platform via sequence selective terpolymerisation of elemental sulphur. Angew. Chem. Int. Ed. 64, e202501337 (2025).

  19. Zhang, Q. et al. Assembling a natural small molecule into a supramolecular network with high structural order and dynamic functions. J. Am. Chem. Soc. 141, 12804–12814 (2019).

    Google Scholar 

  20. Wang, B.-S. et al. Acid-catalyzed disulfide-mediated reversible polymerization for recyclable dynamic covalent materials. Angew. Chem. Int. Ed. 62, e202215329 (2023).

    Google Scholar 

  21. Albanese, K. R., Morris, P. T., Read de Alaniz, J., Bates, C. M. & Hawker, C. J. Controlled-radical polymerization of α-lipoic acid: a general route to degradable vinyl copolymers. J. Am. Chem. Soc. 145, 22728–22734 (2023).

    Google Scholar 

  22. Fang, J. et al. Electrochemical polymerization of 1,2-dithiolane derivatives at room temperature. Angew. Chem. Int. Ed. 64, e202506724 (2025).

  23. Kandemir, D., Luleburgaz, S., Gunay, U. S., Durmaz, H. & Kumbaraci, V. Ultrafast poly(disulfide) synthesis in the presence of organocatalysts. Macromolecules 55, 7806–7816 (2022).

    Google Scholar 

  24. Mu, Y. et al. Polymerization-induced self-coacervation of alternating poly(disulfide)s via ring-opening reaction-mediated polycondensation of cyclic thiosulfinate and dithiol. Macromolecules 58, 74–86 (2025).

    Google Scholar 

  25. Kim, S., Wittek, K. I. & Lee, Y. Synthesis of poly(disulfide)s with narrow molecular weight distributions via lactone ring-opening polymerization. Chem. Sci. 11, 4882–4886 (2020).

    Google Scholar 

  26. Frandsen, M. et al. Automated solid-phase oligo(disulfide) synthesis. Angew. Chem. Int. Ed. 62, e202303170 (2023).

    Google Scholar 

  27. Mondal, A. et al. Cascade initiation of ring opening polymerization for dynamic covalent poly(disulfide)s: one-step double modification and copoly(disulfide) synthesis by living polymerization. Macromolecules 57, 11350–11360 (2024).

    Google Scholar 

  28. Penczek, S., Cypryk, M., Pretula, J., Kaluzynski, K. & Lewinski, P. Elemental sulfur and cyclic sulfides. Homo- and copolymerizations. Kinetics, thermodynamics and DFT analysis. Prog. Polym. Sci. 152, 101818 (2024).

    Google Scholar 

  29. Zhang, R., Nie, T., Fang, Y., Huang, H. & Wu, J. Poly(disulfide)s: from synthesis to drug delivery. Biomacromolecules 23, 1–19 (2022).

    Google Scholar 

  30. Kang, K.-S. et al. Sulfenyl Chlorides: An alternative monomer feedstock from elemental sulfur for polymer synthesis. J. Am. Chem. Soc. 144, 23044–23052 (2022).

    Google Scholar 

  31. Lee, T., Dirlam, P. T., Njardarson, J. T., Glass, R. S. & Pyun, J. Polymerizations with elemental sulfur: from petroleum refining to polymeric materials. J. Am. Chem. Soc. 144, 5–22 (2022).

    Google Scholar 

  32. Manjunatha, B. R. et al. Sequence control in sulphur-containing ring-opening co- and terpolymerisations. Angew. Chem. Int. Ed. 64, e202507243 (2025).

  33. Lim, J., Pyun, J. & Char, K. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials. Angew. Chem. Int. Ed. 54, 3249–3258 (2015).

    Google Scholar 

  34. Yang, H. et al. Anionic hybrid copolymerization of sulfur with acrylate: strategy for synthesis of high-performance sulfur-based polymers. J. Am. Chem. Soc. 145, 14539–14547 (2023).

    Google Scholar 

  35. Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518 (2013).

    Google Scholar 

  36. Gallizioli, C., Battke, D., Schlaad, H., Deglmann, P. & Plajer, A. J. Ring-opening terpolymerisation of elemental sulfur waste with propylene oxide and carbon disulfide via lithium catalysis. Angew. Chem. Int. Ed. 63, e202319810 (2024).

    Google Scholar 

  37. Deng, Y. et al. Converting inorganic sulfur into degradable thermoplastics and adhesives by copolymerization with cyclic disulfides. Nat. Commun. 15, 3855 (2024).

    Google Scholar 

  38. Jia, J. et al. Photoinduced inverse vulcanization. Nat. Chem. 14, 1249–1257 (2022).

    Google Scholar 

  39. Zhang, J. et al. Cyclization polymerization of elemental sulfur and diisocyanate: new polymerization toward high-performance polymer. Angew. Chem. Int. Ed. 64, e202502207(2025).

  40. Zhang, J. et al. Sulfur conversion to multifunctional poly(O-thiocarbamate)s through multicomponent polymerizations of sulfur, diols, and diisocyanides. J. Am. Chem. Soc. 143, 3944–3950 (2021).

    Google Scholar 

  41. Marshall, C. M. et al. Synthesis of polycyclic olefinic monomers from norbornadiene for inverse vulcanization: structural and mechanistic consequences. J. Am. Chem. Soc. 146, 24061–24074 (2024).

    Google Scholar 

  42. He, L., Zhao, H. & Theato, P. No heat, no light—the future of sulfur polymers prepared at room temperature is bright. Angew. Chem. Int. Ed. 57, 13012–13014 (2018).

    Google Scholar 

  43. Fan, J. et al. Inverse vulcanization of aziridines: enhancing polysulfides for superior mechanical strength and adhesive performance. Angew. Chem. Int. Ed. 64, e202418764 (2025).

    Google Scholar 

  44. Huang, H. et al. Step-growth polymerization of aziridines with elemental sulfur: easy access to linear polysulfides and their use as recyclable adhesives. Angew. Chem. Int. Ed. 63, e202318919 (2024).

    Google Scholar 

  45. Tang, H. et al. Direct synthesis of thioesters from feedstock chemicals and elemental sulfur. J. Am. Chem. Soc. 145, 5846–5854 (2023).

    Google Scholar 

  46. Zheng, B. et al. Structural evolution during inverse vulcanization. Nat. Commun. 15, 5507 (2024).

    Google Scholar 

  47. Tian, T., Hu, R. & Tang, B. Z. Room temperature one-step conversion from elemental sulfur to functional polythioureas through catalyst-free multicomponent polymerizations. J. Am. Chem. Soc. 140, 6156–6163 (2018).

    Google Scholar 

  48. Cao, W., Dai, F., Hu, R. & Tang, B. Z. Economic sulfur conversion to functional polythioamides through catalyst-free multicomponent polymerizations of sulfur, acids, and amines. J. Am. Chem. Soc. 142, 978–986 (2020).

    Google Scholar 

  49. Huang, Y., Yu, Y., Hu, R. & Tang, B. Z. Multicomponent polymerizations of elemental sulfur, CH2Cl2, and aromatic amines toward chemically recyclable functional aromatic polythioureas. J. Am. Chem. Soc. 146, 14685–14696 (2024).

    Google Scholar 

  50. Chao, J.-Y. et al. Controlled disassembly of elemental sulfur: an approach to the precise synthesis of polydisulfides. Angew. Chem. Int. Ed. 61, e202115950 (2022).

    Google Scholar 

  51. Ottou, W. N., Sardon, H., Mecerreyes, D., Vignolle, J. & Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 56, 64–115 (2016).

    Google Scholar 

  52. Nair, D. P. et al. The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater. 26, 724–744 (2014).

    Google Scholar 

  53. Yang, H., Zhang, J., Huang, W. & Zhang, G. Transforming element sulfur to high performance closed-loop recyclable polymer via proton transfer enabled anionic hybrid copolymerization. Angew. Chem. Int. Ed. 64, e202414244 (2025).

    Google Scholar 

  54. Bao, J. et al. On the mechanism of the inverse vulcanization of elemental sulfur: structural characterization of poly(sulfur-random-(1,3-diisopropenylbenzene)). J. Am. Chem. Soc. 145, 12386–12397 (2023).

    Google Scholar 

  55. Wu, Z. & Pratt, D. A. Radical substitution provides a unique route to disulfides. J. Am. Chem. Soc. 142, 10284–10290 (2020).

    Google Scholar 

  56. Zhang, Q., Li, Y., Zhang, L. & Luo, S. Catalytic asymmetric disulfuration by a chiral bulky three-component Lewis acid-base. Angew. Chem. Int. Ed. 60, 10971–10976 (2021).

    Google Scholar 

  57. Zhou, F. et al. Generation of perthiyl radicals for the synthesis of unsymmetric disulfides. Nat. Commun. 16, 23 (2025).

    Google Scholar 

  58. Huang, P., Wang, P., Tang, S., Fu, Z. & Lei, A. Electro-oxidative S−H/S−H cross-coupling with hydrogen evolution: facile access to unsymmetrical disulfides. Angew. Chem. Int. Ed. 57, 8115–8119 (2018).

    Google Scholar 

  59. Jin, S. et al. Elemental-sulfur-enabled divergent synthesis of disulfides, diselenides, and polythiophenes from β-CF3−1,3-enynes. Angew. Chem. Int. Ed. 60, 881–888 (2021).

    Google Scholar 

  60. Ong, C. L., Titinchi, S., Juan, J. C. & Khaligh, N. G. An overview of recent advances in the synthesis of organic unsymmetrical disulfides. Helv. Chim. Acta. 104, e2100053 (2021).

    Google Scholar 

  61. Schmitt, C. W. et al. A critical review on the sustainability of inverse vulcanised polymers. RSC Sustain. 3, 4190–4227 (2025).

    Google Scholar 

  62. Tveryanovich, Y. S., Pankin, D. V., Sukhanov, M. V. & Churbanov, M. F. Isotope effect in Raman scattering spectra of 32S8–34S8 solid mixtures. Optik 240, 166861 (2021).

    Google Scholar 

  63. Duarte, M. E., Huber, B., Theato, P. & Mutlu, H. The unrevealed potential of elemental sulfur for the synthesis of high sulfur content bio-based aliphatic polyesters. Polym. Chem. 11, 241–248 (2020).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Natural Science Foundation of Zhejiang Province (LR26E030001, received by Chengjian Zhang) and the National Natural Science Foundation of China (52373014, received by Chengjian Zhang).

Author information

Authors and Affiliations

  1. State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China

    Yue Sun, Yuxiang Cao, Xiong Liu, Chengjian Zhang & Xinghong Zhang

  2. Zhejiang Key Laboratory of Low-Carbon Synthesis of Value-Added Chemicals, Department of Chemistry, Zhejiang University, Hangzhou, China

    Yue Sun, Yuxiang Cao, Xiong Liu, Chengjian Zhang & Xinghong Zhang

  3. National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Coal Gasification New Material Technology Co. LTD, Jinan, China

    Yue Sun

Authors
  1. Yue Sun
    View author publications

    Search author on:PubMed Google Scholar

  2. Yuxiang Cao
    View author publications

    Search author on:PubMed Google Scholar

  3. Xiong Liu
    View author publications

    Search author on:PubMed Google Scholar

  4. Chengjian Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Xinghong Zhang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.S. carried out most of the experiments and wrote the draft. Y.C. carried out the analysis of polymer structure. X.L. carried out the analysis of the polymerization mechanism. C.Z. conceived, designed, and directed the investigation and revised the manuscript. X.Z. directed the investigation and revised the manuscript.

Corresponding author

Correspondence to Chengjian Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Hatice Mutlu, Alex Plajer, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Cao, Y., Liu, X. et al. Synthesis of poly(ester disulfide)s from S8-involved step-growth addition polymerization at ambient temperature. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68963-7

Download citation

  • Received: 01 September 2025

  • Accepted: 19 January 2026

  • Published: 27 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68963-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing