Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Local cloud enhancement associated with urban morphology: evidence from observations and idealized large-eddy simulations
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Local cloud enhancement associated with urban morphology: evidence from observations and idealized large-eddy simulations

  • Yuanfeng Cui  ORCID: orcid.org/0000-0003-4752-25541,
  • Sisi Chen  ORCID: orcid.org/0000-0002-9598-82552,
  • Lulin Xue2,
  • Domingo Muñoz-Esparza2,
  • Jeremy A. Sauer2,
  • Leiqiu Hu3,
  • John D. Albertson1 &
  • …
  • Qi Li  ORCID: orcid.org/0000-0003-4435-62201,4 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric dynamics
  • Climate sciences

Abstract

Previous studies have noted that cities enhance cloud cover, but the mechanisms of urban morphological types on cloud formation remain elusive. Observations of cloud climatology from 44 major U.S. cities show that cloud enhancement increases with the street-canyon aspect ratio and decreases with building density. Here, to explain these observations, we conducted numerical experiments using urban morphology-resolving large-eddy simulations. In these simulations, urban and rural surfaces retain their respective heat-flux differences, while the moisture sources and background atmospheric water vapor are prescribed to be identical, allowing us to isolate the morphological controls on moist convection. Results show that urban morphology influences cloud formation through two mechanisms: taller buildings intensify urban-breeze circulations at the urban-rural interface, while denser buildings, acting as momentum sinks, reduce vertical turbulent transport at the urban core. These vertical motions modify the transport of moisture in the urban atmospheric boundary layer, causing different cloud amounts across different urban morphology. This study highlights the mechanistic link between urban form, vertical motions, and cloud enhancement, thus providing a basis for city-specific boundary-layer convective parameterizations in large-scale weather and climate models.

Data availability

The Python data post-processing scripts used in this study are available on Zenodo at https://doi.org/10.5281/zenodo.17683735. The full original LES output data are not publicly available due to their large size. The cloud cover is obtained from MODIS cloud masks (MYD35_L2 C6.1) from 2002 to 2020. The LCZ map is derived from multiple Earth Observation datasets.

Code availability

The FastEddy® model is publicly available via github: https://github.com/NCAR/FastEddy-model, with the urban capabilities utilized in this study incorporated starting with version 4.0.

References

  1. United Nations. World Urbanization Prospects: The 2018 Revision. Online Edition (UN, 2018).

  2. Qian, Y. et al. Urbanization impact on regional climate and extreme weather: current understanding, uncertainties, and future research directions. Adv. Atmos. Sci. 39, 819–860 (2022).

    Google Scholar 

  3. Liu, J. & Niyogi, D. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. 9, 7301 (2019).

    Google Scholar 

  4. Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).

    Google Scholar 

  5. Manoli, G. et al. Magnitude of urban heat islands largely explained by climate and population. Nature 573, 55–60 (2019).

    Google Scholar 

  6. Theeuwes, N. E., Barlow, J. F., Teuling, A. J., Grimmond, C. S. B. & Kotthaus, S. Persistent cloud cover over mega-cities linked to surface heat release. Npj Clim. Atmos. Sci. 2, 15 (2019).

    Google Scholar 

  7. Betts, A. K., Ball, J. H., Beljaars, A. C., Miller, M. J. & Viterbo, P. A. The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res. Atmos. 101, 7209–7225 (1996).

    Google Scholar 

  8. Ek, M. & Holtslag, A. Influence of soil moisture on boundary layer cloud development. J. Hydrometeorol. 5, 86–99 (2004).

    Google Scholar 

  9. Manoli, G. et al. Soil–plant–atmosphere conditions regulating convective cloud formation above southeastern US pine plantations. Glob. Chang. Biol. 22, 2238–2254 (2016).

    Google Scholar 

  10. Vo, T. T., Hu, L., Xue, L., Li, Q. & Chen, S. Urban effects on local cloud patterns. Proc. Natl. Acad. Sci. 120, e2216765120 (2023).

    Google Scholar 

  11. Collier, C. G. The impact of urban areas on weather. Q. J. R. Meteorol. Soc. 132, 1–25 (2006).

    Google Scholar 

  12. Oke, T. R., Mills, G., Christen, A. & Voogt, J. A. Urban climates (Cambridge University Press, 2017).

  13. Angevine, W. M. et al. Urban–rural contrasts in mixing height and cloudiness over Nashville in 1999. J. Geophys. Res. Atmos. 108, https://doi.org/10.1029/2001JD001061 (2003).

  14. Hidalgo, J., Pigeon, G. & Masson, V. Urban-breeze circulation during the CAPITOUL experiment: observational data analysis approach. Meteorol. Atmos. Phys. 102, 223–241 (2008).

    Google Scholar 

  15. Hidalgo, J., Masson, V. & Gimeno, L. Scaling the daytime urban heat island and urban-breeze circulation. J. Appl. Meteorol. Climatol. 49, 889–901 (2010).

    Google Scholar 

  16. Ryu, Y.-H., Baik, J.-J. & Han, J.-Y. Daytime urban breeze circulation and its interaction with convective cells. Q. J. R. Meteorol. Soc. 139, 401–413 (2013).

    Google Scholar 

  17. Huang, X. & Song, J. Urban moisture and dry islands: spatiotemporal variation patterns and mechanisms of urban air humidity changes across the globe. Environ. Res. Lett. 18, 103003 (2023).

    Google Scholar 

  18. Fan, Y., Hunt, J. C. R. & Li, Y. Buoyancy and turbulence-driven atmospheric circulation over urban areas. J. Environ. Sci. 59, 63–71 (2017).

    Google Scholar 

  19. Braham Jr, R. R., Semonin, R., Auer, A., Changnon Jr, S., Hales, J. Summary of urban effects on clouds and rain. in Metromex: A Review and Summary 141–152 (Springer, 1981).

  20. Shepherd, J., Stallins, J., Jin, M. & Mote, T. Urbanization: impacts on clouds, precipitation, and lightning. Urban Ecosyst. Ecol. 55, 1–28 (2010).

    Google Scholar 

  21. Qu, Y., Milliez, M., Musson-Genon, L. & Carissimo, B. Numerical study of the thermal effects of buildings on low-speed airflow taking into account 3D atmospheric radiation in urban canopy. J. Wind Eng. Ind. Aerodyn. 104, 474–483 (2012).

    Google Scholar 

  22. Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).

    Google Scholar 

  23. Carpentieri, M. & Robins, A. G. Influence of urban morphology on air flow over building arrays. J. Wind Eng. Ind. Aerodyn. 145, 61–74 (2015).

    Google Scholar 

  24. Lee, S.-H. & Park, S.-U. A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer. Meteorol. 126, 73–102 (2008).

    Google Scholar 

  25. Li, Q., Bou-Zeid, E., Grimmond, S., Zilitinkevich, S. & Katul, G. Revisiting the relation between momentum and scalar roughness lengths of urban surfaces. Q. J. R. Meteorol. Soc. 146, 3144–3164 (2020).

    Google Scholar 

  26. Li, Q. & Bou-Zeid, E. Contrasts between momentum and scalar transport over very rough surfaces. J. Fluid Mech. 880, 32–58 (2019).

    Google Scholar 

  27. Cui, Y., Xiao, S., Giometto, M. G. & Li, Q. Effects of urban surface roughness on potential sources of microplastics in the atmospheric boundary layer. Bound. Layer. Meteorol. 186, 425–453 (2023).

    Google Scholar 

  28. Arnfield, A. J. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23, 1–26 (2003).

    Google Scholar 

  29. Omidvar, H., Bou-Zeid, E., Li, Q., Mellado, J.-P. & Klein, P. Plume or bubble? Mixed-convection flow regimes and city-scale circulations. J. Fluid Mech. 897, A5 (2020).

    Google Scholar 

  30. Li, Q., Yang, J. & Yang, L. Impact of urban roughness representation on regional hydrometeorology: An idealized study. J. Geophys. Res. Atmos. 126, e2020JD033812 (2021).

    Google Scholar 

  31. Cui, Y., Xiao, S., Hu, L., Zhao, Y. & Li, Q. Mixed convection in an idealized coastal urban environment with momentum and thermal surface heterogeneities. J. Geophys. Res. Atmos. 129, e2023JD039502 (2024).

    Google Scholar 

  32. Garratt, J. R. The atmospheric boundary layer. Earth Sci. Rev. 37, 89–134 (1994).

    Google Scholar 

  33. Lin, M., Hang, J., Li, Y., Luo, Z. & Sandberg, M. Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density. Build. Environ. 79, 152–167 (2014).

    Google Scholar 

  34. Jing, Y. et al. Quantitative city ventilation evaluation for urban canopy under heat island circulation without geostrophic winds: Multi-scale CFD model and parametric investigations. Build. Environ. 196, 107793 (2021).

    Google Scholar 

  35. Muñoz-Esparza, D. et al. Inclusion of building-resolving capabilities into the FastEddy® GPU-LES model using an immersed body force method. J. Adv. Model. Earth Syst. 12, e2020MS002141 (2020).

    Google Scholar 

  36. Sauer, J. A. & Muñoz-Esparza, D. The FastEddy® resident-GPU accelerated large-eddy simulation framework: model formulation, dynamical-core validation and performance benchmarks. J. Adv. Model. Earth Syst. 12, e2020MS002100 (2020).

    Google Scholar 

  37. Muñoz-Esparza, D., Sauer, J. A., Jensen, A. A., Xue, L. & Grabowski, W. W. The FastEddy® resident-GPU accelerated large-eddy simulation framework: Moist dynamics extension, validation and sensitivities of modeling non-precipitating shallow cumulus clouds. J. Adv. Model. Earth Syst. 14, e2021MS002904 (2022).

    Google Scholar 

  38. Demuzere, M., Argüeso, D., Zonato, A. & Kittner, J. W2W: a Python package that injects WUDAPT’s local climate zone information in WRF. J. Open Source Softw. 7, 4432 (2022).

    Google Scholar 

  39. Du, B., Ge, M., Zeng, C., Cui, G. & Liu, Y. Influence of atmospheric stability on wind-turbine wakes with a certain hub-height turbulence intensity. Phys. Fluids 33, 055111 (2021).

  40. Cheesewright, R. Natural Convection from a Vertical Plane Surface, Ph.D. thesis, Queen Mary University of London (1966).

  41. Meng, Y. & Hibi, K. Turbulent measurments of the flow field around a high-rise building. Wind Eng. JAWE 1998, 55–64 (1998).

    Google Scholar 

  42. Zu, G. & Lam, K. M. Simultaneous measurement of wind velocity field and wind forces on a square tall building. Adv. Struct. Eng. 21, 2241–2258 (2018).

    Google Scholar 

  43. Hong, S.-Y., Noh, Y. & Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006).

    Google Scholar 

  44. Han, J.-Y., Baik, J.-J. & Khain, A. P. A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci. 69, 504–520 (2012).

    Google Scholar 

  45. Zhang, Q., Quan, J., Tie, X., Huang, M. & Ma, X. Impact of aerosol particles on cloud formation: aircraft measurements in China. Atmos. Environ. 45, 665–672 (2011).

    Google Scholar 

  46. Trachte, K., Rollenbeck, R. & Bendix, J. Nocturnal convective cloud formation under clear-sky conditions at the eastern Andes of south Ecuador. J. Geophys. Res. Atmos. 115, https://doi.org/10.1029/2010JD014146 (2010).

  47. Li, R., Sun, T., Ghaffarian, S., Tsamados, M. & Ni, G. GLAMOUR: GLobAl building MOrphology dataset for URban hydroclimate modelling. Sci. Data 11, 618 (2024).

    Google Scholar 

  48. Cui, Y., Hu, L., Wang, Z. & Li, Q. Urban nocturnal cooling mediated by bluespace. Theor. Appl. Climatol. 146, 277–292 (2021).

    Google Scholar 

  49. Rutledge, S. A. & Hobbs, P. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci. 40, 1185–1206 (1983).

    Google Scholar 

  50. Flatau, P. J., Walko, R. L. & Cotton, W. R. Polynomial fits to saturation vapor pressure. J. Appl. Meteorol. (1988-2005) 31, 1507–1513 (1992).

  51. Chan, S. T. & Leach, M. J. A validation of FEM3MP with Joint Urban 2003 data. J. Appl. Meteorol. Climatol. 46, 2127–2146 (2007).

    Google Scholar 

  52. Deardorff, J. W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-layer. Meteorol. 18, 495–527 (1980).

    Google Scholar 

  53. Lilly, D. K. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR report. https://doi.org/10.5065/D67H1GGQ (University Corporation for Atmospheric Research, 1966).

  54. Jiang, G.-S. & Shu, C.-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996).

    Google Scholar 

  55. Wicker, L. J. & Skamarock, W. C. Time-splitting methods for elastic models using forward time schemes. Mon. weather Rev. 130, 2088–2097 (2002).

    Google Scholar 

  56. Kotthaus, S. & Grimmond, C. S. B. Energy exchange in a dense urban environment–Part I: temporal variability of long-term observations in central London. Urban Clim. 10, 261–280 (2014).

    Google Scholar 

  57. Piringer, M. et al. Investigating the surface energy balance in urban areas–recent advances and future needs. Water, Air Soil Pollut. Focus 2, 1–16 (2002).

    Google Scholar 

  58. Siebesma, A. P. et al. A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci. 60, 1201–1219 (2003).

    Google Scholar 

  59. Holland, J. Z. & Rasmusson, E. M. Measurements of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Weather Rev. 101, 44–55 (1973).

    Google Scholar 

  60. Ashkenazy, Y. & Yizhaq, H. The diurnal cycle and temporal trends of surface winds. Earth Planet. Sci. Lett. 601, 117907 (2023).

    Google Scholar 

  61. Thunis, P. & Bornstein, R. Hierarchy of mesoscale flow assumptions and equations. J. Atmos. Sci. 53, 380–397 (1996).

    Google Scholar 

  62. Kusaka, H., Nishi, A., Mizunari, M. & Yokoyama, H. Urban impacts on the spatiotemporal pattern of short-duration convective precipitation in a coastal city adjacent to a mountain range. Q. J. R. Meteorol. Soc. 145, 2237–2254 (2019).

    Google Scholar 

  63. Ackerman, S. A. et al. Cloud detection with MODIS. Part II: validation. J. Atmos. Ocean. Technol. 25, 1073–1086 (2008).

    Google Scholar 

  64. An, N. & Wang, K. A comparison of MODIS-derived cloud fraction with surface observations at five SURFRAD sites. J. Appl. Meteorol. Climatol. 54, 1009–1020 (2015).

    Google Scholar 

  65. Kotarba, A. Z. A comparison of MODIS-derived cloud amount with visual surface observations. Atmos. Res. 92, 522–530 (2009).

    Google Scholar 

  66. Demuzere, M. et al. Combining expert and crowd-sourced training data to map urban form and functions for the continental US. Sci. Data 7, 264 (2020).

    Google Scholar 

  67. Zhang, W. et al. CONUS-wide LCZ map and Training Areas, figshare. https://doi.org/10.6084/M9.FIGSHARE.11416950 (2020).

  68. Dai, C. et al. Determining boundary-layer height from aircraft measurements. Bound. layer. Meteorol. 152, 277–302 (2014).

    Google Scholar 

Download references

Acknowledgements

Q.L. acknowledges support from the US National Science Foundation (NSF-CAREER-2143664, NSF-AGS-2028633, NSF-CBET-2028842). Q.L., J.A., and L.H. acknowledge funding support from the NASA Interdisciplinary Research in Earth Science (IDS)(80NSSC20K1263). Q.L. acknowledges computational resources from the National Center for Atmospheric Research (UCOR-0049 and UCOR-0083). We also appreciate the valuable discussions and insights provided by Dr. Ruidong Li of Tsinghua University.

Author information

Authors and Affiliations

  1. School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA

    Yuanfeng Cui, John D. Albertson & Qi Li

  2. National Center for Atmospheric Research, Boulder, CO, USA

    Sisi Chen, Lulin Xue, Domingo Muñoz-Esparza & Jeremy A. Sauer

  3. Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, AL, USA

    Leiqiu Hu

  4. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

    Qi Li

Authors
  1. Yuanfeng Cui
    View author publications

    Search author on:PubMed Google Scholar

  2. Sisi Chen
    View author publications

    Search author on:PubMed Google Scholar

  3. Lulin Xue
    View author publications

    Search author on:PubMed Google Scholar

  4. Domingo Muñoz-Esparza
    View author publications

    Search author on:PubMed Google Scholar

  5. Jeremy A. Sauer
    View author publications

    Search author on:PubMed Google Scholar

  6. Leiqiu Hu
    View author publications

    Search author on:PubMed Google Scholar

  7. John D. Albertson
    View author publications

    Search author on:PubMed Google Scholar

  8. Qi Li
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.C. and Q.L. designed and conceptualized this research. D.M. and J.S. developed the LES code, designed the LES setup, and run the simulation. L.H. provided the observational dataset. Y.C. analyzed the numerical and observational dataset and developed the analytical models. Y.C. produced the visualizations, and wrote the manuscript draft. Y.C., S.C., L.X., D.M., J.S., L.H., J.A., and Q.L. revised the manuscript.

Corresponding author

Correspondence to Qi Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Chen, S., Xue, L. et al. Local cloud enhancement associated with urban morphology: evidence from observations and idealized large-eddy simulations. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68986-0

Download citation

  • Received: 05 May 2025

  • Accepted: 22 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68986-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene