Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Experimental realization of dice-lattice flat band at the Fermi level in layered electride YCl
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 January 2026

Experimental realization of dice-lattice flat band at the Fermi level in layered electride YCl

  • Songyuan Geng  ORCID: orcid.org/0009-0007-4298-190X1,
  • Xin Wang1,
  • Risi Guo  ORCID: orcid.org/0000-0003-2398-14571,
  • Chen Qiu2,
  • Fangjie Chen1,
  • Qun Wang  ORCID: orcid.org/0009-0007-3554-18181,
  • Kangjie Li1,
  • Peipei Hao3,
  • Hanpu Liang  ORCID: orcid.org/0000-0001-5079-05042,
  • Yang Huang1,
  • Yunbo Wu4,
  • Shengtao Cui  ORCID: orcid.org/0000-0001-8035-95044,
  • Zhe Sun  ORCID: orcid.org/0009-0003-2267-99664,
  • Timur K. Kim  ORCID: orcid.org/0000-0003-4201-44625,
  • Cephise Cacho  ORCID: orcid.org/0000-0002-0058-58175,
  • Daniel S. Dessau3,
  • Benjamin T. Zhou  ORCID: orcid.org/0000-0001-5026-99111 &
  • …
  • Haoxiang Li  ORCID: orcid.org/0000-0001-8543-25981 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Condensed-matter physics

Abstract

Flat electronic bands, where interactions among electrons overwhelm their kinetic energies, hold the promise for exotic correlation physics. The dice lattice has long been theorized as a host of flat bands with intriguing band topology. However, to date, no material has ever been found to host the characteristic flat bands of a dice lattice. Here, using angle-resolved photoemission spectroscopy (ARPES), we discover a dice-lattice flat band at EF in the van der Waals (vdW) electride [YCl]2+: 2e-. In this system, excess valence electrons from Y deconfine from the cation framework to form an interstitial anionic electron lattice that constitutes the dice lattice. Our ARPES measurements unambiguously identify two sets of dice-lattice bands in YCl, including a nearly dispersionless band at the Fermi level. The near-EF electronic structure observed in ARPES, which consists of the flat bands and other dispersive band features, find excellent agreement with first-principles calculations and is well captured by a simple dice-lattice model. Our findings thus end the long quest of a real dice flat band material and establish vdW electride YCl as a prototype of dice metals. Our results further demonstrate the anionic electron lattice as a novel scheme for realizing lattice geometries and electronic structures rare to find in conventional crystalline systems.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).

    Google Scholar 

  2. Riberolles, S. X. M. et al. Chiral and flat-band magnetic quasiparticles in ferromagnetic and metallic kagome layers. Nat. Commun. 15, 1592 (2024).

    Google Scholar 

  3. Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    Google Scholar 

  4. Sheng, D. N., Gu, Z. C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    Google Scholar 

  5. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    Google Scholar 

  6. Checkelsky, J. G., Bernevig, B. A., Coleman, P., Si, Q. & Paschen, S. Flat bands, strange metals and the Kondo effect. Nat. Rev. Mater. 9, 509–526 (2024).

    Google Scholar 

  7. Han, M. et al. Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn. Nat. Commun. 12, 5345 (2021).

    Google Scholar 

  8. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Google Scholar 

  9. Khasanov, R. et al. Tuning of the flat band and its impact on superconductivity in Mo(5)Si(3-x)P(x). Nat. Commun. 15, 2197 (2024).

    Google Scholar 

  10. Samanta, S. et al. Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal. Nat. Commun. 15, 5376 (2024).

    Google Scholar 

  11. Wang, Y.-F., Gu, Z.-C., Gong, C.-D. & Sheng, D. Fractional quantum Hall effect of hard-core bosons in topological flat bands. Phys. Rev. Lett. 107, 146803 (2011).

    Google Scholar 

  12. Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Google Scholar 

  13. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Google Scholar 

  14. Yin, J. X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).

    Google Scholar 

  15. Neupert, T., Denner, M. M., Yin, J.-X., Thomale, R. & Hasan, M. Z. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).

    Google Scholar 

  16. Ghimire, N. J. & Mazin, I. I. Topology and correlations on the kagome lattice. Nat. Mater. 19, 137–138 (2020).

    Google Scholar 

  17. Teng, X. et al. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature 609, 490–495 (2022).

    Google Scholar 

  18. Kang, M. et al. Charge order landscape and competition with superconductivity in kagome metals. Nat. Mater. 22, 186–193 (2023).

    Google Scholar 

  19. Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).

    Google Scholar 

  20. Utama, M. I. B. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 17, 184–188 (2021).

    Google Scholar 

  21. Sutherland, B. Localization of electronic wave functions due to local topology. Phys. Rev. B 34, 5208–5211 (1986).

    Google Scholar 

  22. Vidal, J., Mosseri, R. & Douçot, B. Aharonov–Bohm cages in two-dimensional structures. Phys. Rev. Lett. 81, 5888 (1998).

    Google Scholar 

  23. Horiguchi, T. & Chen, C. C. Lattice Green’s function for the diced lattice. J. Math. Phys. 15, 659–660 (1974).

    Google Scholar 

  24. Soni, R., Kaushal, N., Okamoto, S. & Dagotto, E. Flat bands and ferrimagnetic order in electronically correlated dice-lattice ribbons. Phys. Rev. B 102, 045105 (2020).

    Google Scholar 

  25. Wang, F. & Ran, Y. Nearly flat band with Chern number C=2 on the dice lattice. Phys. Rev. B 84, 241103(R) https://doi.org/10.1103/PhysRevB.84.241103 (2011).

  26. Mohanta, N., Soni, R., Okamoto, S. & Dagotto, E. Majorana corner states on the dice lattice. Commun. Phys. 6, 240 (2023).

    Google Scholar 

  27. Dey, B., Kapri, P., Pal, O. & Ghosh, T. K. Unconventional phases in a Haldane model of dice lattice. Phys. Rev. B 101, 235406 (2020).

    Google Scholar 

  28. Leykam, D., Flach, S. & Chong, Y. D. Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96, 064305 (2017).

    Google Scholar 

  29. Zhang, S. M. & Jin, L. Compact localized states and localization dynamics in the dice lattice. Phys. Rev. B 102, 054301 https://doi.org/10.1103/PhysRevB.102.054301 (2020).

  30. Sukhachov, P., Oriekhov, D. & Gorbar, E. Stackings and effective models of bilayer dice lattices. Phys. Rev. B 108, 075166 (2023).

    Google Scholar 

  31. Kertesz, M. & Hoffmann, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 106, 3453–3460 (1984).

    Google Scholar 

  32. Dai, B., Su, Y., Guo, Y., Wu, C. & Xie, Y. Recent strategies for the synthesis of phase-pure ultrathin 1T/1T′ transition metal dichalcogenide nanosheets. Chem. Rev. 124, 420–454 (2023).

    Google Scholar 

  33. Tassi, C. & Bercioux, D. Implementation and Characterization of the Dice lattice in the electron quantum simulator. Adv. Phys. Res. 3, 2400038 (2024).

    Google Scholar 

  34. Leykam, D., Andreanov, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys: X 3, 1473052 (2018).

    Google Scholar 

  35. Rizzi, M., Cataudella, V. & Fazio, R. Phase diagram of the Bose-Hubbard model with T3 symmetry. Phys. Rev. B 73, 144511 (2006).

    Google Scholar 

  36. Bercioux, D., Urban, D., Grabert, H. & Häusler, W. Massless Dirac-Weyl fermions in a T3 optical lattice. Phys. Rev. A 80, 063603 (2009).

    Google Scholar 

  37. Lee, K., Kim, S. W., Toda, Y., Matsuishi, S. & Hosono, H. Dicalcium nitride as a two-dimensional electride with an anionic electron layer. Nature 494, 336–340 (2013).

    Google Scholar 

  38. Druffel, D. L. et al. Experimental demonstration of an electride as a 2D material. J. Am. Chem. Soc. 138, 16089–16094 (2016).

    Google Scholar 

  39. Tada, T., Takemoto, S., Matsuishi, S. & Hosono, H. High-throughput ab initio screening for two-dimensional electride materials. Inorg. Chem. 53, 10347–10358 (2014).

    Google Scholar 

  40. Oh, J. S. et al. Evidence for anionic excess electrons in a quasi-two-dimensional Ca2N electride by angle-resolved photoemission spectroscopy. J. Am. Chem. Soc. 138, 2496–2499 (2016).

    Google Scholar 

  41. Huang, H., Jin, K. H., Zhang, S. & Liu, F. Topological electride Y(2)C. Nano Lett 18, 1972–1977 (2018).

    Google Scholar 

  42. Park, J. et al. Strong localization of anionic electrons at interlayer for electrical and magnetic anisotropy in two-dimensional Y(2)C electride. J. Am. Chem. Soc. 139, 615–618 (2017).

    Google Scholar 

  43. Wan, B. et al. Identifying quasi-2D and 1D electrides in yttrium and scandium chlorides via geometrical identification. npj Comput. Mater. 4, 77 (2018).

    Google Scholar 

  44. Song, H. Y. et al. Van der Waals electride: toward intrinsic two-dimensional ferromagnetism of spin-polarized anionic electrons. Mater. Today Phys. 20, 100473 (2021).

    Google Scholar 

  45. Kim, S. W., Shimoyama, T. & Hosono, H. Solvated electrons in high-temperature melts and glasses of the room-temperature stable electride [Ca24Al28O64]4+⋅4e−. Science 333, 71–74 (2011).

    Google Scholar 

  46. Steven, B., Dawes, D. L. W., Rui he, H. uang & James, L. Dye. First electride crystal structure. J. Am. Chem. Soc. 108, 2 10.1021/ja00272a073. (1986).

    Google Scholar 

  47. Singh, D. J., Krakauer, H., Haas, C. & Pickett, W. E. Theoretical determination that electrons act as anions in the electride Cs+(15-crown-5)2·e-. Nature 365, 39–42 (1993).

    Google Scholar 

  48. Dye, J. L. Electrons as anions. Science 301, 607–608 (2003).

    Google Scholar 

  49. Dye, J. L. Electrides: early examples of quantum confinement. Acc. Chem. Res. 42, 1564–1572 (2009).

    Google Scholar 

  50. Park, J. et al. Tuning the spin-alignment of interstitial electrons in two-dimensional Y(2)C electride via chemical pressure. J. Am. Chem. Soc. 139, 17277–17280 (2017).

    Google Scholar 

  51. Liu, C., Nikolaev, S. A., Ren, W. & Burton, L. A. Electrides: a review. J. Mater. Chem. C 8, 10551–10567 (2020).

    Google Scholar 

  52. Racioppi, S., Storm, C. V., McMahon, M. I. & Zurek, E. On the electride nature of Na-hP4. Angew. Chem., Int. Ed. Engl 62, e202310802 (2023).

    Google Scholar 

  53. Wan, B. et al. BaCu, a two-dimensional electride with Cu anions. J. Am. Chem. Soc. 146, 17508–17516 (2024).

    Google Scholar 

  54. Kim, S. et al. Long-range lattice engineering of MoTe(2) by a 2D electride. Nano Lett 17, 3363–3368 (2017).

    Google Scholar 

  55. Inoshita, T., Jeong, S., Hamada, N. & Hosono, H. Exploration for two-dimensional electrides via database screening and Ab initio calculation. Phys. Rev. X 4, 031023 (2014).

    Google Scholar 

  56. Chen, C.-Y. et al. Isolated flat band in artificially designed Lieb lattice based on macrocycle supramolecular crystal. Commun. Mater. 5, 54 (2024).

    Google Scholar 

  57. Mondal, S. & Basu, S. Topological features of the Haldane model on a dice lattice: Flat-band effect on transport properties. Phys. Rev. B 107, 035421 (2023).

    Google Scholar 

  58. Li, H. et al. Coherent organization of electronic correlations as a mechanism to enhance and stabilize high-TC cuprate superconductivity. Nat. Commun. 9, 26 (2018).

    Google Scholar 

  59. Gadzuk, J. W. Screening energies in photoelectron spectroscopy of localized electron levels. Phys. Rev. B 14, 2267 (1976).

    Google Scholar 

  60. Zheng, Q. et al. Direct visualization of anionic electrons in an electride reveals inhomogeneities. Sci. Adv. 7, eabe6819 (2021).

    Google Scholar 

  61. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).

    Google Scholar 

  62. Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).

    Google Scholar 

  63. Kato, T. et al. Surface-termination-dependent electronic states in kagome superconductors AV 3 Sb 5 (A= K, Rb, Cs) studied by micro-ARPES. Phys. Rev. B 107, 245143 (2023).

    Google Scholar 

  64. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).

    Google Scholar 

  65. Wilson, J. A., Di Salvo, F. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    Google Scholar 

  66. Song, X. et al. Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching. Nat. Commun. 13, 1843 (2022).

    Google Scholar 

  67. Meyer, J. S. & Matveev, K. Wigner crystal physics in quantum wires. J. Phys. Condens. Matter 21, 023203 (2008).

    Google Scholar 

  68. Monarkha, Y. P. & Syvokon, V. A two-dimensional Wigner crystal. Low Temp. Phys. 38, 1067–1095 (2012).

    Google Scholar 

  69. Glasson, P. et al. Observation of dynamical ordering in a confined Wigner crystal. Phys. Rev. Lett. 87, 176802 (2001).

    Google Scholar 

  70. Zong, H. et al. Free electron to electride transition in dense liquid potassium. Nat. Phys. 17, 955–960 (2021).

    Google Scholar 

  71. Hoesch, M. et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev. Sci. Instrum. 88, 013106 (2017).

    Google Scholar 

  72. Furthmüller, J., Hafner, J. & Kresse, G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. Phys. Rev. B 53, 7334 (1996).

    Google Scholar 

  73. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Google Scholar 

  74. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Google Scholar 

  75. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245 (1994).

    Google Scholar 

  76. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 12, 3060 (1975).

    Google Scholar 

  77. Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).

    Google Scholar 

  78. Perdew, J. P., McMullen, E. R. & Zunger, A. Density-functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge. Phys. Rev. A 23, 2785 (1981).

    Google Scholar 

  79. Weaver, S. M. et al. Counting electrons in electrides. J. Am. Chem. Soc. 145, 26472–26476 (2023).

    Google Scholar 

  80. Zheng, Q. VASP band unfolding. github https://github.com/QijingZheng/VaspBandUnfolding (2018).

Download references

Acknowledgements

This work was supported by NSFC-Young Scientists Fund (No. 12304093, No. 12504194 and No. 12447158), Guangdong Natural Science Fund-General Program (No. 2025A1515010667), the Guangdong Provincial Quantum Science Strategic Initiative (Grant No. GDZX2501004) and Start-up Fund of HKUST(GZ) through grant no. G0101000127 and no. G0104000263. The Modern Matter Laboratory (MML), Green e Materials Laboratory (GeM), and the Materials Characterization and Preparation Facility (MCPF) at HKUST(GZ) provided the necessary instruments for the crystal synthesis and characterizations. We acknowledge beamline I05 at Diamond Light Source for beamtime under proposal SI38254.

Author information

Authors and Affiliations

  1. Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

    Songyuan Geng, Xin Wang, Risi Guo, Fangjie Chen, Qun Wang, Kangjie Li, Yang Huang, Benjamin T. Zhou & Haoxiang Li

  2. Department of Physics, Eastern Institute of Technology, Ningbo, China

    Chen Qiu & Hanpu Liang

  3. Department of Physics, University of Colorado, Boulder, CO, USA

    Peipei Hao & Daniel S. Dessau

  4. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China

    Yunbo Wu, Shengtao Cui & Zhe Sun

  5. Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK

    Timur K. Kim & Cephise Cacho

Authors
  1. Songyuan Geng
    View author publications

    Search author on:PubMed Google Scholar

  2. Xin Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Risi Guo
    View author publications

    Search author on:PubMed Google Scholar

  4. Chen Qiu
    View author publications

    Search author on:PubMed Google Scholar

  5. Fangjie Chen
    View author publications

    Search author on:PubMed Google Scholar

  6. Qun Wang
    View author publications

    Search author on:PubMed Google Scholar

  7. Kangjie Li
    View author publications

    Search author on:PubMed Google Scholar

  8. Peipei Hao
    View author publications

    Search author on:PubMed Google Scholar

  9. Hanpu Liang
    View author publications

    Search author on:PubMed Google Scholar

  10. Yang Huang
    View author publications

    Search author on:PubMed Google Scholar

  11. Yunbo Wu
    View author publications

    Search author on:PubMed Google Scholar

  12. Shengtao Cui
    View author publications

    Search author on:PubMed Google Scholar

  13. Zhe Sun
    View author publications

    Search author on:PubMed Google Scholar

  14. Timur K. Kim
    View author publications

    Search author on:PubMed Google Scholar

  15. Cephise Cacho
    View author publications

    Search author on:PubMed Google Scholar

  16. Daniel S. Dessau
    View author publications

    Search author on:PubMed Google Scholar

  17. Benjamin T. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  18. Haoxiang Li
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.G., B.T.Z., and H.Li conceived the project. S.G. and H.Li led the ARPES measurement and analysis. R.G., X.W., F.C., Q.W., K.L., P.H., Y.W., S.C., Z.S., T.K., C.C., and D.D. helped with the ARPES measurement. X.W., R.G., S.G., Y.H., and H.Li performed the single-crystal synthesis and the crystal characterizations. S.G., H.Li, and B.T.Z. carried out the DFT and TB model calculations. D.D., H.Liang, and C.Q. helped to give suggestions. S.G., B.T.Z., and H.Li did the majority of the paper writing, with contributions from all coauthors. B.T.Z. and H.Li directed the overall project.

Corresponding authors

Correspondence to Benjamin T. Zhou or Haoxiang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Andrii Iurov, Liang Jin, and Guo-Xing Miao for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, S., Wang, X., Guo, R. et al. Experimental realization of dice-lattice flat band at the Fermi level in layered electride YCl. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69049-0

Download citation

  • Received: 08 October 2025

  • Accepted: 23 January 2026

  • Published: 31 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-69049-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing