Abstract
Flat electronic bands, where interactions among electrons overwhelm their kinetic energies, hold the promise for exotic correlation physics. The dice lattice has long been theorized as a host of flat bands with intriguing band topology. However, to date, no material has ever been found to host the characteristic flat bands of a dice lattice. Here, using angle-resolved photoemission spectroscopy (ARPES), we discover a dice-lattice flat band at EF in the van der Waals (vdW) electride [YCl]2+: 2e-. In this system, excess valence electrons from Y deconfine from the cation framework to form an interstitial anionic electron lattice that constitutes the dice lattice. Our ARPES measurements unambiguously identify two sets of dice-lattice bands in YCl, including a nearly dispersionless band at the Fermi level. The near-EF electronic structure observed in ARPES, which consists of the flat bands and other dispersive band features, find excellent agreement with first-principles calculations and is well captured by a simple dice-lattice model. Our findings thus end the long quest of a real dice flat band material and establish vdW electride YCl as a prototype of dice metals. Our results further demonstrate the anionic electron lattice as a novel scheme for realizing lattice geometries and electronic structures rare to find in conventional crystalline systems.
Data availability
The data that support the findings of this study are available from the corresponding authors on reasonable request.
References
Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).
Riberolles, S. X. M. et al. Chiral and flat-band magnetic quasiparticles in ferromagnetic and metallic kagome layers. Nat. Commun. 15, 1592 (2024).
Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).
Sheng, D. N., Gu, Z. C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).
Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).
Checkelsky, J. G., Bernevig, B. A., Coleman, P., Si, Q. & Paschen, S. Flat bands, strange metals and the Kondo effect. Nat. Rev. Mater. 9, 509–526 (2024).
Han, M. et al. Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn. Nat. Commun. 12, 5345 (2021).
Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
Khasanov, R. et al. Tuning of the flat band and its impact on superconductivity in Mo(5)Si(3-x)P(x). Nat. Commun. 15, 2197 (2024).
Samanta, S. et al. Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal. Nat. Commun. 15, 5376 (2024).
Wang, Y.-F., Gu, Z.-C., Gong, C.-D. & Sheng, D. Fractional quantum Hall effect of hard-core bosons in topological flat bands. Phys. Rev. Lett. 107, 146803 (2011).
Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).
Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).
Yin, J. X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).
Neupert, T., Denner, M. M., Yin, J.-X., Thomale, R. & Hasan, M. Z. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).
Ghimire, N. J. & Mazin, I. I. Topology and correlations on the kagome lattice. Nat. Mater. 19, 137–138 (2020).
Teng, X. et al. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature 609, 490–495 (2022).
Kang, M. et al. Charge order landscape and competition with superconductivity in kagome metals. Nat. Mater. 22, 186–193 (2023).
Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).
Utama, M. I. B. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 17, 184–188 (2021).
Sutherland, B. Localization of electronic wave functions due to local topology. Phys. Rev. B 34, 5208–5211 (1986).
Vidal, J., Mosseri, R. & Douçot, B. Aharonov–Bohm cages in two-dimensional structures. Phys. Rev. Lett. 81, 5888 (1998).
Horiguchi, T. & Chen, C. C. Lattice Green’s function for the diced lattice. J. Math. Phys. 15, 659–660 (1974).
Soni, R., Kaushal, N., Okamoto, S. & Dagotto, E. Flat bands and ferrimagnetic order in electronically correlated dice-lattice ribbons. Phys. Rev. B 102, 045105 (2020).
Wang, F. & Ran, Y. Nearly flat band with Chern number C=2 on the dice lattice. Phys. Rev. B 84, 241103(R) https://doi.org/10.1103/PhysRevB.84.241103 (2011).
Mohanta, N., Soni, R., Okamoto, S. & Dagotto, E. Majorana corner states on the dice lattice. Commun. Phys. 6, 240 (2023).
Dey, B., Kapri, P., Pal, O. & Ghosh, T. K. Unconventional phases in a Haldane model of dice lattice. Phys. Rev. B 101, 235406 (2020).
Leykam, D., Flach, S. & Chong, Y. D. Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96, 064305 (2017).
Zhang, S. M. & Jin, L. Compact localized states and localization dynamics in the dice lattice. Phys. Rev. B 102, 054301 https://doi.org/10.1103/PhysRevB.102.054301 (2020).
Sukhachov, P., Oriekhov, D. & Gorbar, E. Stackings and effective models of bilayer dice lattices. Phys. Rev. B 108, 075166 (2023).
Kertesz, M. & Hoffmann, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 106, 3453–3460 (1984).
Dai, B., Su, Y., Guo, Y., Wu, C. & Xie, Y. Recent strategies for the synthesis of phase-pure ultrathin 1T/1T′ transition metal dichalcogenide nanosheets. Chem. Rev. 124, 420–454 (2023).
Tassi, C. & Bercioux, D. Implementation and Characterization of the Dice lattice in the electron quantum simulator. Adv. Phys. Res. 3, 2400038 (2024).
Leykam, D., Andreanov, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys: X 3, 1473052 (2018).
Rizzi, M., Cataudella, V. & Fazio, R. Phase diagram of the Bose-Hubbard model with T3 symmetry. Phys. Rev. B 73, 144511 (2006).
Bercioux, D., Urban, D., Grabert, H. & Häusler, W. Massless Dirac-Weyl fermions in a T3 optical lattice. Phys. Rev. A 80, 063603 (2009).
Lee, K., Kim, S. W., Toda, Y., Matsuishi, S. & Hosono, H. Dicalcium nitride as a two-dimensional electride with an anionic electron layer. Nature 494, 336–340 (2013).
Druffel, D. L. et al. Experimental demonstration of an electride as a 2D material. J. Am. Chem. Soc. 138, 16089–16094 (2016).
Tada, T., Takemoto, S., Matsuishi, S. & Hosono, H. High-throughput ab initio screening for two-dimensional electride materials. Inorg. Chem. 53, 10347–10358 (2014).
Oh, J. S. et al. Evidence for anionic excess electrons in a quasi-two-dimensional Ca2N electride by angle-resolved photoemission spectroscopy. J. Am. Chem. Soc. 138, 2496–2499 (2016).
Huang, H., Jin, K. H., Zhang, S. & Liu, F. Topological electride Y(2)C. Nano Lett 18, 1972–1977 (2018).
Park, J. et al. Strong localization of anionic electrons at interlayer for electrical and magnetic anisotropy in two-dimensional Y(2)C electride. J. Am. Chem. Soc. 139, 615–618 (2017).
Wan, B. et al. Identifying quasi-2D and 1D electrides in yttrium and scandium chlorides via geometrical identification. npj Comput. Mater. 4, 77 (2018).
Song, H. Y. et al. Van der Waals electride: toward intrinsic two-dimensional ferromagnetism of spin-polarized anionic electrons. Mater. Today Phys. 20, 100473 (2021).
Kim, S. W., Shimoyama, T. & Hosono, H. Solvated electrons in high-temperature melts and glasses of the room-temperature stable electride [Ca24Al28O64]4+⋅4e−. Science 333, 71–74 (2011).
Steven, B., Dawes, D. L. W., Rui he, H. uang & James, L. Dye. First electride crystal structure. J. Am. Chem. Soc. 108, 2 10.1021/ja00272a073. (1986).
Singh, D. J., Krakauer, H., Haas, C. & Pickett, W. E. Theoretical determination that electrons act as anions in the electride Cs+(15-crown-5)2·e-. Nature 365, 39–42 (1993).
Dye, J. L. Electrons as anions. Science 301, 607–608 (2003).
Dye, J. L. Electrides: early examples of quantum confinement. Acc. Chem. Res. 42, 1564–1572 (2009).
Park, J. et al. Tuning the spin-alignment of interstitial electrons in two-dimensional Y(2)C electride via chemical pressure. J. Am. Chem. Soc. 139, 17277–17280 (2017).
Liu, C., Nikolaev, S. A., Ren, W. & Burton, L. A. Electrides: a review. J. Mater. Chem. C 8, 10551–10567 (2020).
Racioppi, S., Storm, C. V., McMahon, M. I. & Zurek, E. On the electride nature of Na-hP4. Angew. Chem., Int. Ed. Engl 62, e202310802 (2023).
Wan, B. et al. BaCu, a two-dimensional electride with Cu anions. J. Am. Chem. Soc. 146, 17508–17516 (2024).
Kim, S. et al. Long-range lattice engineering of MoTe(2) by a 2D electride. Nano Lett 17, 3363–3368 (2017).
Inoshita, T., Jeong, S., Hamada, N. & Hosono, H. Exploration for two-dimensional electrides via database screening and Ab initio calculation. Phys. Rev. X 4, 031023 (2014).
Chen, C.-Y. et al. Isolated flat band in artificially designed Lieb lattice based on macrocycle supramolecular crystal. Commun. Mater. 5, 54 (2024).
Mondal, S. & Basu, S. Topological features of the Haldane model on a dice lattice: Flat-band effect on transport properties. Phys. Rev. B 107, 035421 (2023).
Li, H. et al. Coherent organization of electronic correlations as a mechanism to enhance and stabilize high-TC cuprate superconductivity. Nat. Commun. 9, 26 (2018).
Gadzuk, J. W. Screening energies in photoelectron spectroscopy of localized electron levels. Phys. Rev. B 14, 2267 (1976).
Zheng, Q. et al. Direct visualization of anionic electrons in an electride reveals inhomogeneities. Sci. Adv. 7, eabe6819 (2021).
Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).
Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).
Kato, T. et al. Surface-termination-dependent electronic states in kagome superconductors AV 3 Sb 5 (A= K, Rb, Cs) studied by micro-ARPES. Phys. Rev. B 107, 245143 (2023).
Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).
Wilson, J. A., Di Salvo, F. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
Song, X. et al. Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching. Nat. Commun. 13, 1843 (2022).
Meyer, J. S. & Matveev, K. Wigner crystal physics in quantum wires. J. Phys. Condens. Matter 21, 023203 (2008).
Monarkha, Y. P. & Syvokon, V. A two-dimensional Wigner crystal. Low Temp. Phys. 38, 1067–1095 (2012).
Glasson, P. et al. Observation of dynamical ordering in a confined Wigner crystal. Phys. Rev. Lett. 87, 176802 (2001).
Zong, H. et al. Free electron to electride transition in dense liquid potassium. Nat. Phys. 17, 955–960 (2021).
Hoesch, M. et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev. Sci. Instrum. 88, 013106 (2017).
Furthmüller, J., Hafner, J. & Kresse, G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. Phys. Rev. B 53, 7334 (1996).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).
Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245 (1994).
Andersen, O. K. Linear methods in band theory. Phys. Rev. B 12, 3060 (1975).
Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).
Perdew, J. P., McMullen, E. R. & Zunger, A. Density-functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge. Phys. Rev. A 23, 2785 (1981).
Weaver, S. M. et al. Counting electrons in electrides. J. Am. Chem. Soc. 145, 26472–26476 (2023).
Zheng, Q. VASP band unfolding. github https://github.com/QijingZheng/VaspBandUnfolding (2018).
Acknowledgements
This work was supported by NSFC-Young Scientists Fund (No. 12304093, No. 12504194 and No. 12447158), Guangdong Natural Science Fund-General Program (No. 2025A1515010667), the Guangdong Provincial Quantum Science Strategic Initiative (Grant No. GDZX2501004) and Start-up Fund of HKUST(GZ) through grant no. G0101000127 and no. G0104000263. The Modern Matter Laboratory (MML), Green e Materials Laboratory (GeM), and the Materials Characterization and Preparation Facility (MCPF) at HKUST(GZ) provided the necessary instruments for the crystal synthesis and characterizations. We acknowledge beamline I05 at Diamond Light Source for beamtime under proposal SI38254.
Author information
Authors and Affiliations
Contributions
S.G., B.T.Z., and H.Li conceived the project. S.G. and H.Li led the ARPES measurement and analysis. R.G., X.W., F.C., Q.W., K.L., P.H., Y.W., S.C., Z.S., T.K., C.C., and D.D. helped with the ARPES measurement. X.W., R.G., S.G., Y.H., and H.Li performed the single-crystal synthesis and the crystal characterizations. S.G., H.Li, and B.T.Z. carried out the DFT and TB model calculations. D.D., H.Liang, and C.Q. helped to give suggestions. S.G., B.T.Z., and H.Li did the majority of the paper writing, with contributions from all coauthors. B.T.Z. and H.Li directed the overall project.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Andrii Iurov, Liang Jin, and Guo-Xing Miao for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Geng, S., Wang, X., Guo, R. et al. Experimental realization of dice-lattice flat band at the Fermi level in layered electride YCl. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69049-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69049-0