Abstract
Skin Neglected Tropical Diseases (skin NTDs) are a critical, underestimated source of chronic pathology, severely impacting vulnerable, rural populations with poor healthcare access. These diseases heighten the risk of systemic infection, amputation, and premature mortality. Their visibility and co-endemic nature present a pivotal opportunity for integrated diagnostics and management at the primary care level. Aligned with the WHO roadmap, this review advocates for a robust One Health framework, examining the complex interplay of human, animal, and environmental transmission factors. We contrast diseases with understood transmission against those requiring research. Leveraging the skin as a common pathway, we argue for strategic, integrated public health action to substantially improve patient outcomes globally.
References
Hay, R. J. et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol. 134, 1527–1534 (2014).
Giona, G., Cooper, L. & Butt, A. Changing Demographics and Disease Burden in Low Resource Countries. (Springer, Cham., 2024).
Martinengo, L. et al. Prevalence of chronic wounds in the general population: systematic review and meta-analysis of observational studies. Ann. Epidemiol. 29, 8–15 (2019).
Organization, W. H. (World Health Organization, 2020).
Hay, R. J. & Asiedu, K. Skin-related neglected tropical diseases (Skin NTDs)-A new challenge. Trop. Med. Infect. Dis. 4, https://doi.org/10.3390/tropicalmed4010004 (2018).
Chandler, D. J. & Fuller, L. C. The skin-A common pathway for integrating diagnosis and nanagement of NTDs. Trop. Med. Infect. Dis. 3, (2018).
Vieri, M. K., Logora, M. Y., Rafiq, K. & Colebunders, R. The World Health Organization road map for neglected tropical diseases 2021-2030: implications for onchocerciasis elimination programs. Infect. Dis. Poverty 10, 70 (2021).
Organization, W. H. Skin Diseases as a Global Public Health Priority. (2025).
Antonio Ruiz Postigo, J., Pathak, P. & Asiedu, K. Skin health for all: update on skin neglected tropical diseases with a focus on Buruli ulcer and yaws. 239–250 (World Health Organization, 2025).
Branda, F. et al. Assessing the burden of neglected tropical diseases in low-income communities: challenges and solutions. Viruses 17, 29 (2025).
Organization, W. H. (Geneva, Switzerland, 2020).
Threats, I. O. N. U. F. O. M. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases. (National Academies Press, 2011).
Goldberg, T. L. et al. Yaws circulating in nonhuman primates, Uganda and Rwanda. Emerg. Infect. Dis. 31, 799–803 (2025).
Romero-Alvarez, D. et al. Mycobacterium leprae in Nine-Banded Armadillos (Dasypus novemcinctus), Ecuador. Emerg. Infect. Dis. 30, 2629–2632 (2024).
Honap, T. P. et al. Mycobacterium leprae genomes from naturally infected nonhuman primates. PLoS Negl. Trop. Dis. 12, e0006190 (2018).
Zinsstag, J. et al. Climate change and one health. FEMS Microbiol. Lett. 365, https://doi.org/10.1093/femsle/fny085 (2018).
Sinclair, J. R. Importance of a One Health approach in advancing global health security and the Sustainable Development Goals. Rev. Sci. Tech. 38, 145–154 (2019).
Hudu, S. A. et al. An insight into the Success, Challenges, and Future perspectives of eliminating Neglected tropical disease. Sci. African 24, e02165 (2024).
Barnowska, E. J. et al. Diagnosing skin neglected tropical diseases with the aid of digital health tools: A scoping review. PLOS Digit Health 3, e0000629 (2024).
Timothy, J. W. S. et al. Quantifying population burden and effectiveness of secentralized surveillance strategies for skin-presenting neglected tropical diseases, liberia. Emerg. Infect. Dis. 28, 1755–1764 (2022).
Yotsu, R. R. Integrated management of Skin NTDs-lessons learned from existing practice and field research. Trop. Med. Infect. Dis. 3, https://doi.org/10.3390/tropicalmed3040120 (2018).
Lakwo, T., Oguttu, D., Ukety, T., Post, R. & Bakajika, D. Onchocerciasis elimination: progress and challenges. Res. Rep. Trop. Med. 11, 81–95 (2020).
Crump, A., Morel, C. M. & Omura, S. The onchocerciasis chronicle: from the beginning to the end? Trends Parasitol. 28, 280–288 (2012).
Mackenzie, C. D., Homeida, M. M., Hopkins, A. D. & Lawrence, J. C. Elimination of onchocerciasis from Africa: possible? Trends Parasitol. 28, 16–22 (2012).
Eisele, M. et al. Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil: I. Natural history of tungiasis in man. Parasitol. Res. 90, 87–99 (2003).
Pampiglione, S., Trentini, M., Fioravanti, M. L., Onore, G. & Rivasi, F. Additional description of a new species of Tunga (Siphonaptera) from Ecuador. Parasite 10, 9–15 (2003).
Nagy, N. et al. Investigations on the life cycle and morphology of Tunga penetrans in Brazil. Parasitol Res 101, S233–S242 (2007).
Muehlen, M. et al. Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil. II. Prevalence, parasite load and topographic distribution of lesions in the population of a traditional fishing village. Parasitol Res. 90, 449–455 (2003).
Nyangacha, R. M. et al. Spatial distribution, prevalence and potential risk factors of Tungiasis in Vihiga County, Kenya. PLoS Negl. Trop. Dis. 13, e0007244 (2019).
Ugbomoiko, U. S., Ariza, L., Ofoezie, I. E. & Heukelbach, J. Risk factors for tungiasis in Nigeria: identification of targets for effective intervention. PLoS Negl. Trop. Dis. 1, e87 (2007).
Matharu, A. K. et al. Identification of tungiasis infection hotspots with a low-cost, high-throughput method for extracting Tunga penetrans (Siphonaptera) off-host stages from soil samples-An observational study. PLoS Negl. Trop. Dis. 18, e0011601 (2024).
Mutebi, F. et al. Animal Reservoirs of Zoonotic Tungiasis in Endemic Rural Villages of Uganda. PLoS Negl. Trop. Dis. 9, e0004126 (2015).
Frank, R. et al. Tunga penetrans and further parasites in the giant anteater (Myrmecophaga tridactyla) from Minas Gerais, Brazil. Parasitol. Res. 111, 1907–1912 (2012).
Heukelbach, J., Costa, A. M., Wilcke, T., Mencke, N. & Feldmeier, H. The animal reservoir of Tunga penetrans in severely affected communities of north-east Brazil. Med. Vet. Entomol. 18, 329–335 (2004).
Schott, D. et al. Clinical and pathological aspects of first report of Tunga penetrans infestation on southern brown howler monkey (Alouatta guariba clamitans) in Rio Grande do Sul, Brazil. J. Med. Primatol. 49, 315–321 (2020).
Thielecke, M. et al. Prevention of tungiasis and tungiasis-associated morbidity using the plant-based repellent Zanzarin: a randomized, controlled field study in rural Madagascar. PLoS Negl. Trop. Dis. 7, e2426 (2013).
Buckendahl, J. et al. Control of tungiasis through intermittent application of a plant-based repellent: an intervention study in a resource-poor community in Brazil. PLoS Negl. Trop. Dis. 4, e879 (2010).
Elson, L., Nyawa, S. M., Matharu, A. & Fillinger, U. Developing low-cost house floors to control tungiasis in Kenya - a feasibility study. BMC Public Health 23, 2483 (2023).
Heukelbach, J., Ariza, L., Adegbola, R. Q. & Ugbomoiko, U. S. Sustainable control of tungiasis in rural Nigeria: a case for One Health. One Health & Implement. Res. 1, 4–13 (2021).
Arlian, L. G. & Morgan, M. S. A review of Sarcoptes scabiei: past, present and future. Parasites Vectors 10, 297 (2017).
Röltgen, K. & Pluschke, G. in Buruli Ulcer: Mycobacterium Ulcerans Disease (eds Gerd Pluschke & Katharina Röltgen) 1–41 (Springer International Publishing, 2019).
Maxfield, L. & Corley, J., Crane, J. S. in StatPearls [Internet] (StatPearls Publishing, 2023).
Vicar, E. K., Simpson, S. V., Mensah, G. I., Addo, K. K. & Donkor, E. S. Yaws in Africa: Past, Present and Future. Diseases 13, 14 (2025).
Bhuvaneswari, A., Shriram, A. N., Raju, K.H.K. & Kumar, A. Mosquitoes, lymphatic filariasis, and public health: A systematic review of anopheles and aedes surveillance strategies. Pathogens 12, 1406 (2023).
de Souza, D. K. et al. Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis. Parasit Vectors 5, 259 (2012).
Moulia-Pelat, J. P. et al. Periodicity of Wuchereria bancrofti var. pacifica filariasis in French Polynesia. Trop. Med. Parasitol. 44, 83–85 (1993).
Mallawarachchi, C. H. et al. A preliminary survey of filarial parasites in dogs and cats in Sri Lanka. PLoS ONE 13, e0206633 (2018).
Evans, C. C., Pilotte, N. & Moorhead, A. R. Current status of the diagnosis of Brugia spp. Infections. Pathogens 13, 714 (2024).
Stocks, M. E., Freeman, M. C. & Addiss, D. G. The effect of hygiene-based lymphedema management in lymphatic filariasis-endemic areas: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 9, e0004171 (2015).
Beard, J. H., Ohene-Yeboah, M., devries, C. R. & Schecter, W. P. in Essential Surgery: Disease Control Priorities, Third Edition (Volume 1) (eds H. T. Debas) et al. (The International Bank for Reconstruction and Development / The World Bank© 2015 International Bank for Reconstruction and Development / The World Bank., 2015).
Yotsu, R. R. et al. A global call for action to tackle skin-related neglected tropical diseases (skin NTDs) through integration: An ambitious step change. PLoS Negl. Trop. Dis. 17, e0011357 (2023).
de Vries, H. J. C. & Schallig, H. D. Cutaneous leishmaniasis: A 2022 updated narrative review into diagnosis and management developments. Am. J. Clin. Dermatol. 23, 823–840 (2022).
Akhoundi, M. et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 10, e0004349 (2016).
Scott, P. & Novais, F. O. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat. Rev. Immunol. 16, 581–592 (2016).
Perales-Gonzalez, A., Perez-Garza, D. M., Garza-Davila, V. F. & Ocampo-Candiani, J. Cutaneous leishmaniasis by a needlestick injury, an occupational infection? PLoS Negl. Trop. Dis. 17, e0011150 (2023).
Alrehaili, J. Leprosy classification, clinical features, epidemiology, and host immunological responses: failure of eradication in 2023. Cureus 15, e44767 (2023).
Ploemacher, T., Faber, W. R., Menke, H., Rutten, V. & Pieters, T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl. Trop. Dis. 14, e0008276 (2020).
Bratschi, M. W., Steinmann, P., Wickenden, A. & Gillis, T. P. Current knowledge on Mycobacterium leprae transmission: a systematic literature review. Lepr. Rev. 86, 142–155 (2015).
Arraes, M. et al. Natural environmental water sources in endemic regions of northeastern Brazil are potential reservoirs of viable Mycobacterium leprae. Mem. Inst. Oswaldo Cruz 112, 805–811 (2017).
Lavania, M. et al. Detection of viable Mycobacterium leprae in soil samples: insights into possible sources of transmission of leprosy. Infect. Genet. Evol. 8, 627–631 (2008).
Turankar, R. P., Lavania, M., Singh, M., Siva Sai, K. S. & Jadhav, R. S. Dynamics of Mycobacterium leprae transmission in environmental context: deciphering the role of environment as a potential reservoir. Infect. Genet. Evol. 12, 121–126 (2012).
Rojas-Espinosa, O. & Løvik, M. Mycobacterium leprae and Mycobacterium lepraemurium infections in domestic and wild animals. Rev. Sci. Tech. 20, 219–251 (2001).
George, K. M. et al. Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283, 854–857 (1999).
Combe, M. et al. Global and local environmental changes as drivers of Buruli ulcer emergence. Emerg. Microbes Infect. 6, e21 (2017).
Narh, C. A. et al. Source tracking Mycobacterium ulcerans infections in the Ashanti region, Ghana. PLoS Negl. Trop. Dis. 9, e0003437 (2015).
Dhungel, L., Benbow, M. E. & Jordan, H. R. Linking the Mycobacterium ulcerans environment to Buruli ulcer disease: Progress and challenges. One Health 13, 100311 (2021).
Willson, S. J. et al. Fish and amphibians as potential reservoirs of Mycobacterium ulcerans, the causative agent of Buruli ulcer disease. Infect. Ecol. Epidemiol. 3, https://doi.org/10.3402/iee.v3i0.19946 (2013).
Mosi, L. et al. Mycobacterium ulcerans causes minimal pathogenesis and colonization in medaka (Oryzias latipes): an experimental fish model of disease transmission. Microbes Infect. 14, 719–729 (2012).
Tchatchouang, S. et al. Systematic review: Global host range, case fatality and detection rates of Mycobacterium ulcerans in humans and potential environmental sources. J. Clin. Tuberc. Other Mycobact. Dis. 36, 100457 (2024).
Maman, I. et al. Risk factors for Mycobacterium ulcerans infection (Buruli Ulcer) in Togo ─ a case-control study in Zio and Yoto districts of the maritime region. BMC Infect. Dis. 18, 48 (2018).
Williamson, H. R. et al. Mycobacterium ulcerans fails to infect through skin abrasions in a guinea pig infection model: implications for transmission. PLoS Negl. Trop. Dis. 8, e2770 (2014).
Wallace, J. R. et al. Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer. PLoS Negl. Trop. Dis. 11, e0005553 (2017).
McNamara, B. J. et al. Comprehensive case-control study of protective and risk factors for Buruli Ulcer, Southeastern Australia. Emerg. Infect. Dis. 29, 2032–2043 (2023).
Mee, P. T. et al. Mosquitoes provide a transmission route between possums and humans for Buruli ulcer in southeastern Australia. Nat. Microbiol. 9, 377–389 (2024).
Receveur, J. P. et al. A need for null models in understanding disease transmission: the example of Mycobacterium ulcerans (Buruli ulcer disease). FEMS Microbiol. Rev. 46, https://doi.org/10.1093/femsre/fuab045 (2022).
Guégan, J.-F. et al. Canonical fact versus hypothesis testing to decipher transmission of non-tuberculous and tuberculous mycobacteria: a comparative review. Clin. Microbiol. Rev. 0, e00228–00224 (2025).
Amofah, G. et al. Buruli ulcer in Ghana: results of a national case search. Emerg Infect. Dis. 8, 167–170 (2002).
Smith, D. J. et al. South-East Asia regional neglected tropical disease framework: improving control of mycetoma, chromoblastomycosis, and sporotrichosis. Lancet Reg. Health Southeast Asia 35, 100561 (2025).
Hassan, R. et al. Modelling the spatial distribution of mycetoma in Sudan. Trans. R. Soc. Trop. Med. Hyg. 115, 1144–1152 (2021).
Bakshi, R. & Mathur, D. R. Incidence and changing pattern of mycetoma in western Rajasthan. Indian J. Pathol. Microbiol. 51, 154–155 (2008).
Hao, X., Cognetti, M., Burch-Smith, R., Mejia, E. O. S. & Mirkin, G. Mycetoma: Development of Diagnosis and Treatment. J. Fungi 8, 743 (2022).
Hashizume, H. et al. Environmental detection of eumycetoma pathogens using multiplex real-time PCR for soil DNA in Sennar State, Sudan. Trop. Med. Health 51, 71 (2023).
Smith, D. J. et al. A global chromoblastomycosis strategy and development of the global chromoblastomycosis working group. PLoS Negl. Trop. Dis. 18, e0012562 (2024).
Gadre, A., Enbiale, W., Andersen, L. K. & Coates, S. J. The effects of climate change on fungal diseases with cutaneous manifestations: A report from the International Society of Dermatology Climate Change Committee. J. Clim. Change Health 6, 100156 (2022).
Bandino, J. P., Hang, A. & Norton, S. A. The infectious and noninfectious dermatological consequences of flooding: A field manual for the responding provider. Am. J. Clin. Dermatol. 16, 399–424 (2015).
Riddel, C. E. et al. Fungal foes: presentations of chromoblastomycosis post-hurricane Ike. Cutis 87, 269–272 (2011).
Marimon, R. et al. Sporothrix brasiliensis, S. globosa, and S. mexicana, Three New Sporothrix Species of Clinical Interest. J. Clin. Microbiol. 45, 3198–3206 (2007).
Song, Y. et al. Report of 457 sporotrichosis cases from Jilin province, northeast China, a serious endemic region. J. Eur. Acad. Dermatol. Venereol. 27, 313–318 (2013).
Almeida-Paes, R. et al. The present and future research agenda of sporotrichosis on the silver anniversary of zoonotic sporotrichosis in Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 119, e230208 (2024).
de Andrade Galliano Daros Bastos, F. et al. Spread of Sporothrix spp. through respiratory droplets from infected cats: A potential route of transmission. Med. Mycol. 60, https://doi.org/10.1093/mmy/myac079 (2022).
Ribeiro dos Santos, A. et al. Emergence of zoonotic sporotrichosis in Brazil: a genomic epidemiology study. Lancet Microbe 5, e282–e290 (2024).
Baes Pereira, S. et al. Sporotrichosis in dogs: epidemiological and clinical-therapeutic profile and the emergence of itraconazole-resistant isolates. Med. Mycol. 60, https://doi.org/10.1093/mmy/myac089 (2022).
Cabeza, E. et al. Clinical and epidemiological characteristics of Sporotrichosis in a Reference Center of Uruguay. J. Fungi 8, 322 (2022).
Moore, J. J. & Davis, D. J. Sporotrichosis following Mouse Bite with Certain Immunologic Data. J. Infect. Dis. 23, 252–265 (1918).
Córdoba, S. et al. Molecular identification and susceptibility profile of Sporothrix schenckii sensu lato isolated in Argentina. Mycoses 61, 441–448 (2018).
George, N. S. et al. Addressing neglected tropical diseases in Africa: a health equity perspective. Glob. Health Res. Policy 8, 30 (2023).
Borlase, A., Prada, J. M. & Crellen, T. Modelling morbidity for neglected tropical diseases: the long and winding road from cumulative exposure to long-term pathology. Philos. Trans. R Soc. Lond. B Biol. Sci. 378, 20220279 (2023).
Shaw, C., McLure, A., Graves, P. M., Lau, C. L. & Glass, K. Lymphatic filariasis endgame strategies: Using GEOFIL to model mass drug administration and targeted surveillance and treatment strategies in American Samoa. PLoS Negl. Trop. Dis. 17, e0011347 (2023).
Sharma, Y. et al. Models and data used to predict the abundance and distribution of Ixodes scapularis (blacklegged tick) in North America: a scoping review. Lancet Reg. Health Am. 32, 100706 (2024).
Toor, J. et al. Strengthening data collection for neglected tropical diseases: What data are needed for models to better inform tailored intervention programmes? PLoS Negl. Trop. Dis. 15, e0009351 (2021).
Marion, E. et al. A combined effort of 11 laboratories in the WHO African region to improve quality of Buruli ulcer PCR diagnosis: The BU-LABNET. PLoS Negl. Trop. Dis. 16, e0010908 (2022).
Girma, A. & Abdu, I. Prevalence and Risk Factors of Tungiasis Among Selected Regions of Ethiopia: A Meta-Analysis. Health Sci. Rep. 8, e71233 (2025).
Organization, W. H. Report of a WHO informal meeting on the development of a conceptual framework for tungiasis control: virtual meeting, 11–13 January 2021. (World Health Organization, 2021).
Wiese, S., Elson, L., Reichert, F., Mambo, B. & Feldmeier, H. Prevalence, intensity and risk factors of tungiasis in Kilifi County, Kenya: I. Results from a community-based study. PLoS Negl. Trop. Dis. 11, e0005925 (2017).
Organization, W. H. (2025).
Pereira, F. M., Penados, D., Dorn, P. L., Alcántara, B. & Monroy, M. C. The long-term impact of an Ecohealth intervention: Entomological data suggest the interruption of Chagas disease transmission in southeastern Guatemala. Acta Tropica 235, 106655 (2022).
Guégan, J. F. et al. Emerging infectious diseases and new pandemics: dancing with a ghost! Lessons in inter- and transdisciplinary research in French Guiana, South America. Int. J. Infect. Dis. 133, 9–13 (2023).
Chevillon, C. et al. Ecological and evolutionary perspectives advance understanding of mycobacterial diseases. Lancet Microbe 5, 100906 (2024).
Mitjà, O. et al. Integrated Control and Management of Neglected Tropical Skin Diseases. PLoS Negl. Trop. Dis. 11, e0005136 (2017).
Cecchi, L., D’Amato, G. & Annesi-Maesano, I. External exposome and allergic respiratory and skin diseases. J Allergy Clin. Immunol. 141, 846–857 (2018).
Molina-García, M., Granger, C., Trullàs, C. & Puig, S. Exposome and Skin: Part 1. Bibliometric Analysis and Review of the Impact of Exposome Approaches on Dermatology. Dermatol. Ther. 12, 345–359 (2022).
Molina-García, M. et al. Exposome and Skin. Part 2. The Influential Role of the Exposome, Beyond UVR, in Actinic Keratosis, Bowen’s Disease and Squamous Cell Carcinoma: A Proposal. Dermatol. Ther. 12, 361–380 (2022).
Acknowledgements
We thank the WHO NTD department for map production. Additionally, we appreciate the assistance of Mr. Yorm Edem Doe and Miss Susanna Apraku for their help in organizing literature resources. HJ is supported, in part, by NSF Industry University Cooperative Research Center grant 2052788 and USDA NIFA grant 2023-67019-39248, and H.J. and M.E.B. were supported, in part, by the NSF-NIH-NIFA Ecology and Evolution of Infectious Disease program [DEB #1911457]; any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Author information
Authors and Affiliations
Contributions
H.J. and L.M. conceived and coordinated the conceptual framework for the manuscript. H.J., L.M., B.A., K.A., A.B., M.E.B., D.D., L.E., A.F., R.H., R.N., C.Q., A.S., and D.J.S. all contributed sections of the paper and/or critically reviewed, edited, and refined the various drafts of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Mosi, L., Acharya, B., Asiedu, K. et al. Integrated action for skin NTDs: Deconstructing transmission, addressing knowledge gaps, and championing one health strategies. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69065-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69065-0