Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. review articles
  4. article
Integrated action for skin NTDs: Deconstructing transmission, addressing knowledge gaps, and championing one health strategies
Download PDF
Download PDF
  • Review Article
  • Open access
  • Published: 03 February 2026

Integrated action for skin NTDs: Deconstructing transmission, addressing knowledge gaps, and championing one health strategies

  • Lydia Mosi1,2,
  • Bishwanath Acharya3,
  • Kingsley Asiedu4,
  • Adeola Bamisaiye  ORCID: orcid.org/0000-0002-5478-60674,
  • M. Eric Benbow  ORCID: orcid.org/0000-0003-2630-02825,
  • Dziedzom De Souza  ORCID: orcid.org/0000-0001-5000-61776,
  • Lynne Elson  ORCID: orcid.org/0000-0003-2264-44597,
  • Ahmed Fahal8,
  • Roderick Hay9,
  • Ruth Nyangacha10,
  • Charles Quaye  ORCID: orcid.org/0000-0002-3683-33686,
  • Aisha Shitu Sa’id11,
  • Dallas J. Smith  ORCID: orcid.org/0000-0001-5707-528X12 &
  • …
  • Heather Jordan  ORCID: orcid.org/0000-0002-4197-219413 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecological epidemiology
  • Infectious diseases
  • Skin diseases

Abstract

Skin Neglected Tropical Diseases (skin NTDs) are a critical, underestimated source of chronic pathology, severely impacting vulnerable, rural populations with poor healthcare access. These diseases heighten the risk of systemic infection, amputation, and premature mortality. Their visibility and co-endemic nature present a pivotal opportunity for integrated diagnostics and management at the primary care level. Aligned with the WHO roadmap, this review advocates for a robust One Health framework, examining the complex interplay of human, animal, and environmental transmission factors. We contrast diseases with understood transmission against those requiring research. Leveraging the skin as a common pathway, we argue for strategic, integrated public health action to substantially improve patient outcomes globally.

References

  1. Hay, R. J. et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol. 134, 1527–1534 (2014).

    Google Scholar 

  2. Giona, G., Cooper, L. & Butt, A. Changing Demographics and Disease Burden in Low Resource Countries. (Springer, Cham., 2024).

  3. Martinengo, L. et al. Prevalence of chronic wounds in the general population: systematic review and meta-analysis of observational studies. Ann. Epidemiol. 29, 8–15 (2019).

    Google Scholar 

  4. Organization, W. H. (World Health Organization, 2020).

  5. Hay, R. J. & Asiedu, K. Skin-related neglected tropical diseases (Skin NTDs)-A new challenge. Trop. Med. Infect. Dis. 4, https://doi.org/10.3390/tropicalmed4010004 (2018).

  6. Chandler, D. J. & Fuller, L. C. The skin-A common pathway for integrating diagnosis and nanagement of NTDs. Trop. Med. Infect. Dis. 3, (2018).

  7. Vieri, M. K., Logora, M. Y., Rafiq, K. & Colebunders, R. The World Health Organization road map for neglected tropical diseases 2021-2030: implications for onchocerciasis elimination programs. Infect. Dis. Poverty 10, 70 (2021).

    Google Scholar 

  8. Organization, W. H. Skin Diseases as a Global Public Health Priority. (2025).

  9. Antonio Ruiz Postigo, J., Pathak, P. & Asiedu, K. Skin health for all: update on skin neglected tropical diseases with a focus on Buruli ulcer and yaws. 239–250 (World Health Organization, 2025).

  10. Branda, F. et al. Assessing the burden of neglected tropical diseases in low-income communities: challenges and solutions. Viruses 17, 29 (2025).

    Google Scholar 

  11. Organization, W. H. (Geneva, Switzerland, 2020).

  12. Threats, I. O. N. U. F. O. M. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases. (National Academies Press, 2011).

  13. Goldberg, T. L. et al. Yaws circulating in nonhuman primates, Uganda and Rwanda. Emerg. Infect. Dis. 31, 799–803 (2025).

    Google Scholar 

  14. Romero-Alvarez, D. et al. Mycobacterium leprae in Nine-Banded Armadillos (Dasypus novemcinctus), Ecuador. Emerg. Infect. Dis. 30, 2629–2632 (2024).

    Google Scholar 

  15. Honap, T. P. et al. Mycobacterium leprae genomes from naturally infected nonhuman primates. PLoS Negl. Trop. Dis. 12, e0006190 (2018).

    Google Scholar 

  16. Zinsstag, J. et al. Climate change and one health. FEMS Microbiol. Lett. 365, https://doi.org/10.1093/femsle/fny085 (2018).

  17. Sinclair, J. R. Importance of a One Health approach in advancing global health security and the Sustainable Development Goals. Rev. Sci. Tech. 38, 145–154 (2019).

    Google Scholar 

  18. Hudu, S. A. et al. An insight into the Success, Challenges, and Future perspectives of eliminating Neglected tropical disease. Sci. African 24, e02165 (2024).

    Google Scholar 

  19. Barnowska, E. J. et al. Diagnosing skin neglected tropical diseases with the aid of digital health tools: A scoping review. PLOS Digit Health 3, e0000629 (2024).

    Google Scholar 

  20. Timothy, J. W. S. et al. Quantifying population burden and effectiveness of secentralized surveillance strategies for skin-presenting neglected tropical diseases, liberia. Emerg. Infect. Dis. 28, 1755–1764 (2022).

    Google Scholar 

  21. Yotsu, R. R. Integrated management of Skin NTDs-lessons learned from existing practice and field research. Trop. Med. Infect. Dis. 3, https://doi.org/10.3390/tropicalmed3040120 (2018).

  22. Lakwo, T., Oguttu, D., Ukety, T., Post, R. & Bakajika, D. Onchocerciasis elimination: progress and challenges. Res. Rep. Trop. Med. 11, 81–95 (2020).

    Google Scholar 

  23. Crump, A., Morel, C. M. & Omura, S. The onchocerciasis chronicle: from the beginning to the end? Trends Parasitol. 28, 280–288 (2012).

    Google Scholar 

  24. Mackenzie, C. D., Homeida, M. M., Hopkins, A. D. & Lawrence, J. C. Elimination of onchocerciasis from Africa: possible? Trends Parasitol. 28, 16–22 (2012).

    Google Scholar 

  25. Eisele, M. et al. Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil: I. Natural history of tungiasis in man. Parasitol. Res. 90, 87–99 (2003).

    Google Scholar 

  26. Pampiglione, S., Trentini, M., Fioravanti, M. L., Onore, G. & Rivasi, F. Additional description of a new species of Tunga (Siphonaptera) from Ecuador. Parasite 10, 9–15 (2003).

    Google Scholar 

  27. Nagy, N. et al. Investigations on the life cycle and morphology of Tunga penetrans in Brazil. Parasitol Res 101, S233–S242 (2007).

    Google Scholar 

  28. Muehlen, M. et al. Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil. II. Prevalence, parasite load and topographic distribution of lesions in the population of a traditional fishing village. Parasitol Res. 90, 449–455 (2003).

    Google Scholar 

  29. Nyangacha, R. M. et al. Spatial distribution, prevalence and potential risk factors of Tungiasis in Vihiga County, Kenya. PLoS Negl. Trop. Dis. 13, e0007244 (2019).

    Google Scholar 

  30. Ugbomoiko, U. S., Ariza, L., Ofoezie, I. E. & Heukelbach, J. Risk factors for tungiasis in Nigeria: identification of targets for effective intervention. PLoS Negl. Trop. Dis. 1, e87 (2007).

    Google Scholar 

  31. Matharu, A. K. et al. Identification of tungiasis infection hotspots with a low-cost, high-throughput method for extracting Tunga penetrans (Siphonaptera) off-host stages from soil samples-An observational study. PLoS Negl. Trop. Dis. 18, e0011601 (2024).

    Google Scholar 

  32. Mutebi, F. et al. Animal Reservoirs of Zoonotic Tungiasis in Endemic Rural Villages of Uganda. PLoS Negl. Trop. Dis. 9, e0004126 (2015).

    Google Scholar 

  33. Frank, R. et al. Tunga penetrans and further parasites in the giant anteater (Myrmecophaga tridactyla) from Minas Gerais, Brazil. Parasitol. Res. 111, 1907–1912 (2012).

    Google Scholar 

  34. Heukelbach, J., Costa, A. M., Wilcke, T., Mencke, N. & Feldmeier, H. The animal reservoir of Tunga penetrans in severely affected communities of north-east Brazil. Med. Vet. Entomol. 18, 329–335 (2004).

    Google Scholar 

  35. Schott, D. et al. Clinical and pathological aspects of first report of Tunga penetrans infestation on southern brown howler monkey (Alouatta guariba clamitans) in Rio Grande do Sul, Brazil. J. Med. Primatol. 49, 315–321 (2020).

    Google Scholar 

  36. Thielecke, M. et al. Prevention of tungiasis and tungiasis-associated morbidity using the plant-based repellent Zanzarin: a randomized, controlled field study in rural Madagascar. PLoS Negl. Trop. Dis. 7, e2426 (2013).

    Google Scholar 

  37. Buckendahl, J. et al. Control of tungiasis through intermittent application of a plant-based repellent: an intervention study in a resource-poor community in Brazil. PLoS Negl. Trop. Dis. 4, e879 (2010).

    Google Scholar 

  38. Elson, L., Nyawa, S. M., Matharu, A. & Fillinger, U. Developing low-cost house floors to control tungiasis in Kenya - a feasibility study. BMC Public Health 23, 2483 (2023).

    Google Scholar 

  39. Heukelbach, J., Ariza, L., Adegbola, R. Q. & Ugbomoiko, U. S. Sustainable control of tungiasis in rural Nigeria: a case for One Health. One Health & Implement. Res. 1, 4–13 (2021).

    Google Scholar 

  40. Arlian, L. G. & Morgan, M. S. A review of Sarcoptes scabiei: past, present and future. Parasites Vectors 10, 297 (2017).

    Google Scholar 

  41. Röltgen, K. & Pluschke, G. in Buruli Ulcer: Mycobacterium Ulcerans Disease (eds Gerd Pluschke & Katharina Röltgen) 1–41 (Springer International Publishing, 2019).

  42. Maxfield, L. & Corley, J., Crane, J. S. in StatPearls [Internet] (StatPearls Publishing, 2023).

  43. Vicar, E. K., Simpson, S. V., Mensah, G. I., Addo, K. K. & Donkor, E. S. Yaws in Africa: Past, Present and Future. Diseases 13, 14 (2025).

    Google Scholar 

  44. Bhuvaneswari, A., Shriram, A. N., Raju, K.H.K. & Kumar, A. Mosquitoes, lymphatic filariasis, and public health: A systematic review of anopheles and aedes surveillance strategies. Pathogens 12, 1406 (2023).

  45. de Souza, D. K. et al. Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis. Parasit Vectors 5, 259 (2012).

    Google Scholar 

  46. Moulia-Pelat, J. P. et al. Periodicity of Wuchereria bancrofti var. pacifica filariasis in French Polynesia. Trop. Med. Parasitol. 44, 83–85 (1993).

    Google Scholar 

  47. Mallawarachchi, C. H. et al. A preliminary survey of filarial parasites in dogs and cats in Sri Lanka. PLoS ONE 13, e0206633 (2018).

    Google Scholar 

  48. Evans, C. C., Pilotte, N. & Moorhead, A. R. Current status of the diagnosis of Brugia spp. Infections. Pathogens 13, 714 (2024).

  49. Stocks, M. E., Freeman, M. C. & Addiss, D. G. The effect of hygiene-based lymphedema management in lymphatic filariasis-endemic areas: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 9, e0004171 (2015).

    Google Scholar 

  50. Beard, J. H., Ohene-Yeboah, M., devries, C. R. & Schecter, W. P. in Essential Surgery: Disease Control Priorities, Third Edition (Volume 1) (eds H. T. Debas) et al. (The International Bank for Reconstruction and Development / The World Bank© 2015 International Bank for Reconstruction and Development / The World Bank., 2015).

  51. Yotsu, R. R. et al. A global call for action to tackle skin-related neglected tropical diseases (skin NTDs) through integration: An ambitious step change. PLoS Negl. Trop. Dis. 17, e0011357 (2023).

    Google Scholar 

  52. de Vries, H. J. C. & Schallig, H. D. Cutaneous leishmaniasis: A 2022 updated narrative review into diagnosis and management developments. Am. J. Clin. Dermatol. 23, 823–840 (2022).

    Google Scholar 

  53. Akhoundi, M. et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 10, e0004349 (2016).

    Google Scholar 

  54. Scott, P. & Novais, F. O. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat. Rev. Immunol. 16, 581–592 (2016).

    Google Scholar 

  55. Perales-Gonzalez, A., Perez-Garza, D. M., Garza-Davila, V. F. & Ocampo-Candiani, J. Cutaneous leishmaniasis by a needlestick injury, an occupational infection? PLoS Negl. Trop. Dis. 17, e0011150 (2023).

    Google Scholar 

  56. Alrehaili, J. Leprosy classification, clinical features, epidemiology, and host immunological responses: failure of eradication in 2023. Cureus 15, e44767 (2023).

    Google Scholar 

  57. Ploemacher, T., Faber, W. R., Menke, H., Rutten, V. & Pieters, T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl. Trop. Dis. 14, e0008276 (2020).

    Google Scholar 

  58. Bratschi, M. W., Steinmann, P., Wickenden, A. & Gillis, T. P. Current knowledge on Mycobacterium leprae transmission: a systematic literature review. Lepr. Rev. 86, 142–155 (2015).

    Google Scholar 

  59. Arraes, M. et al. Natural environmental water sources in endemic regions of northeastern Brazil are potential reservoirs of viable Mycobacterium leprae. Mem. Inst. Oswaldo Cruz 112, 805–811 (2017).

    Google Scholar 

  60. Lavania, M. et al. Detection of viable Mycobacterium leprae in soil samples: insights into possible sources of transmission of leprosy. Infect. Genet. Evol. 8, 627–631 (2008).

    Google Scholar 

  61. Turankar, R. P., Lavania, M., Singh, M., Siva Sai, K. S. & Jadhav, R. S. Dynamics of Mycobacterium leprae transmission in environmental context: deciphering the role of environment as a potential reservoir. Infect. Genet. Evol. 12, 121–126 (2012).

    Google Scholar 

  62. Rojas-Espinosa, O. & Løvik, M. Mycobacterium leprae and Mycobacterium lepraemurium infections in domestic and wild animals. Rev. Sci. Tech. 20, 219–251 (2001).

    Google Scholar 

  63. George, K. M. et al. Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283, 854–857 (1999).

    Google Scholar 

  64. Combe, M. et al. Global and local environmental changes as drivers of Buruli ulcer emergence. Emerg. Microbes Infect. 6, e21 (2017).

    Google Scholar 

  65. Narh, C. A. et al. Source tracking Mycobacterium ulcerans infections in the Ashanti region, Ghana. PLoS Negl. Trop. Dis. 9, e0003437 (2015).

    Google Scholar 

  66. Dhungel, L., Benbow, M. E. & Jordan, H. R. Linking the Mycobacterium ulcerans environment to Buruli ulcer disease: Progress and challenges. One Health 13, 100311 (2021).

    Google Scholar 

  67. Willson, S. J. et al. Fish and amphibians as potential reservoirs of Mycobacterium ulcerans, the causative agent of Buruli ulcer disease. Infect. Ecol. Epidemiol. 3, https://doi.org/10.3402/iee.v3i0.19946 (2013).

  68. Mosi, L. et al. Mycobacterium ulcerans causes minimal pathogenesis and colonization in medaka (Oryzias latipes): an experimental fish model of disease transmission. Microbes Infect. 14, 719–729 (2012).

    Google Scholar 

  69. Tchatchouang, S. et al. Systematic review: Global host range, case fatality and detection rates of Mycobacterium ulcerans in humans and potential environmental sources. J. Clin. Tuberc. Other Mycobact. Dis. 36, 100457 (2024).

    Google Scholar 

  70. Maman, I. et al. Risk factors for Mycobacterium ulcerans infection (Buruli Ulcer) in Togo ─ a case-control study in Zio and Yoto districts of the maritime region. BMC Infect. Dis. 18, 48 (2018).

    Google Scholar 

  71. Williamson, H. R. et al. Mycobacterium ulcerans fails to infect through skin abrasions in a guinea pig infection model: implications for transmission. PLoS Negl. Trop. Dis. 8, e2770 (2014).

    Google Scholar 

  72. Wallace, J. R. et al. Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer. PLoS Negl. Trop. Dis. 11, e0005553 (2017).

    Google Scholar 

  73. McNamara, B. J. et al. Comprehensive case-control study of protective and risk factors for Buruli Ulcer, Southeastern Australia. Emerg. Infect. Dis. 29, 2032–2043 (2023).

    Google Scholar 

  74. Mee, P. T. et al. Mosquitoes provide a transmission route between possums and humans for Buruli ulcer in southeastern Australia. Nat. Microbiol. 9, 377–389 (2024).

    Google Scholar 

  75. Receveur, J. P. et al. A need for null models in understanding disease transmission: the example of Mycobacterium ulcerans (Buruli ulcer disease). FEMS Microbiol. Rev. 46, https://doi.org/10.1093/femsre/fuab045 (2022).

  76. Guégan, J.-F. et al. Canonical fact versus hypothesis testing to decipher transmission of non-tuberculous and tuberculous mycobacteria: a comparative review. Clin. Microbiol. Rev. 0, e00228–00224 (2025).

    Google Scholar 

  77. Amofah, G. et al. Buruli ulcer in Ghana: results of a national case search. Emerg Infect. Dis. 8, 167–170 (2002).

    Google Scholar 

  78. Smith, D. J. et al. South-East Asia regional neglected tropical disease framework: improving control of mycetoma, chromoblastomycosis, and sporotrichosis. Lancet Reg. Health Southeast Asia 35, 100561 (2025).

    Google Scholar 

  79. Hassan, R. et al. Modelling the spatial distribution of mycetoma in Sudan. Trans. R. Soc. Trop. Med. Hyg. 115, 1144–1152 (2021).

    Google Scholar 

  80. Bakshi, R. & Mathur, D. R. Incidence and changing pattern of mycetoma in western Rajasthan. Indian J. Pathol. Microbiol. 51, 154–155 (2008).

  81. Hao, X., Cognetti, M., Burch-Smith, R., Mejia, E. O. S. & Mirkin, G. Mycetoma: Development of Diagnosis and Treatment. J. Fungi 8, 743 (2022).

    Google Scholar 

  82. Hashizume, H. et al. Environmental detection of eumycetoma pathogens using multiplex real-time PCR for soil DNA in Sennar State, Sudan. Trop. Med. Health 51, 71 (2023).

    Google Scholar 

  83. Smith, D. J. et al. A global chromoblastomycosis strategy and development of the global chromoblastomycosis working group. PLoS Negl. Trop. Dis. 18, e0012562 (2024).

    Google Scholar 

  84. Gadre, A., Enbiale, W., Andersen, L. K. & Coates, S. J. The effects of climate change on fungal diseases with cutaneous manifestations: A report from the International Society of Dermatology Climate Change Committee. J. Clim. Change Health 6, 100156 (2022).

    Google Scholar 

  85. Bandino, J. P., Hang, A. & Norton, S. A. The infectious and noninfectious dermatological consequences of flooding: A field manual for the responding provider. Am. J. Clin. Dermatol. 16, 399–424 (2015).

    Google Scholar 

  86. Riddel, C. E. et al. Fungal foes: presentations of chromoblastomycosis post-hurricane Ike. Cutis 87, 269–272 (2011).

    Google Scholar 

  87. Marimon, R. et al. Sporothrix brasiliensis, S. globosa, and S. mexicana, Three New Sporothrix Species of Clinical Interest. J. Clin. Microbiol. 45, 3198–3206 (2007).

    Google Scholar 

  88. Song, Y. et al. Report of 457 sporotrichosis cases from Jilin province, northeast China, a serious endemic region. J. Eur. Acad. Dermatol. Venereol. 27, 313–318 (2013).

    Google Scholar 

  89. Almeida-Paes, R. et al. The present and future research agenda of sporotrichosis on the silver anniversary of zoonotic sporotrichosis in Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 119, e230208 (2024).

    Google Scholar 

  90. de Andrade Galliano Daros Bastos, F. et al. Spread of Sporothrix spp. through respiratory droplets from infected cats: A potential route of transmission. Med. Mycol. 60, https://doi.org/10.1093/mmy/myac079 (2022).

  91. Ribeiro dos Santos, A. et al. Emergence of zoonotic sporotrichosis in Brazil: a genomic epidemiology study. Lancet Microbe 5, e282–e290 (2024).

    Google Scholar 

  92. Baes Pereira, S. et al. Sporotrichosis in dogs: epidemiological and clinical-therapeutic profile and the emergence of itraconazole-resistant isolates. Med. Mycol. 60, https://doi.org/10.1093/mmy/myac089 (2022).

  93. Cabeza, E. et al. Clinical and epidemiological characteristics of Sporotrichosis in a Reference Center of Uruguay. J. Fungi 8, 322 (2022).

    Google Scholar 

  94. Moore, J. J. & Davis, D. J. Sporotrichosis following Mouse Bite with Certain Immunologic Data. J. Infect. Dis. 23, 252–265 (1918).

    Google Scholar 

  95. Córdoba, S. et al. Molecular identification and susceptibility profile of Sporothrix schenckii sensu lato isolated in Argentina. Mycoses 61, 441–448 (2018).

    Google Scholar 

  96. George, N. S. et al. Addressing neglected tropical diseases in Africa: a health equity perspective. Glob. Health Res. Policy 8, 30 (2023).

    Google Scholar 

  97. Borlase, A., Prada, J. M. & Crellen, T. Modelling morbidity for neglected tropical diseases: the long and winding road from cumulative exposure to long-term pathology. Philos. Trans. R Soc. Lond. B Biol. Sci. 378, 20220279 (2023).

    Google Scholar 

  98. Shaw, C., McLure, A., Graves, P. M., Lau, C. L. & Glass, K. Lymphatic filariasis endgame strategies: Using GEOFIL to model mass drug administration and targeted surveillance and treatment strategies in American Samoa. PLoS Negl. Trop. Dis. 17, e0011347 (2023).

    Google Scholar 

  99. Sharma, Y. et al. Models and data used to predict the abundance and distribution of Ixodes scapularis (blacklegged tick) in North America: a scoping review. Lancet Reg. Health Am. 32, 100706 (2024).

    Google Scholar 

  100. Toor, J. et al. Strengthening data collection for neglected tropical diseases: What data are needed for models to better inform tailored intervention programmes? PLoS Negl. Trop. Dis. 15, e0009351 (2021).

    Google Scholar 

  101. Marion, E. et al. A combined effort of 11 laboratories in the WHO African region to improve quality of Buruli ulcer PCR diagnosis: The BU-LABNET. PLoS Negl. Trop. Dis. 16, e0010908 (2022).

    Google Scholar 

  102. Girma, A. & Abdu, I. Prevalence and Risk Factors of Tungiasis Among Selected Regions of Ethiopia: A Meta-Analysis. Health Sci. Rep. 8, e71233 (2025).

    Google Scholar 

  103. Organization, W. H. Report of a WHO informal meeting on the development of a conceptual framework for tungiasis control: virtual meeting, 11–13 January 2021. (World Health Organization, 2021).

  104. Wiese, S., Elson, L., Reichert, F., Mambo, B. & Feldmeier, H. Prevalence, intensity and risk factors of tungiasis in Kilifi County, Kenya: I. Results from a community-based study. PLoS Negl. Trop. Dis. 11, e0005925 (2017).

    Google Scholar 

  105. Organization, W. H. (2025).

  106. Pereira, F. M., Penados, D., Dorn, P. L., Alcántara, B. & Monroy, M. C. The long-term impact of an Ecohealth intervention: Entomological data suggest the interruption of Chagas disease transmission in southeastern Guatemala. Acta Tropica 235, 106655 (2022).

    Google Scholar 

  107. Guégan, J. F. et al. Emerging infectious diseases and new pandemics: dancing with a ghost! Lessons in inter- and transdisciplinary research in French Guiana, South America. Int. J. Infect. Dis. 133, 9–13 (2023).

    Google Scholar 

  108. Chevillon, C. et al. Ecological and evolutionary perspectives advance understanding of mycobacterial diseases. Lancet Microbe 5, 100906 (2024).

    Google Scholar 

  109. Mitjà, O. et al. Integrated Control and Management of Neglected Tropical Skin Diseases. PLoS Negl. Trop. Dis. 11, e0005136 (2017).

    Google Scholar 

  110. Cecchi, L., D’Amato, G. & Annesi-Maesano, I. External exposome and allergic respiratory and skin diseases. J Allergy Clin. Immunol. 141, 846–857 (2018).

    Google Scholar 

  111. Molina-García, M., Granger, C., Trullàs, C. & Puig, S. Exposome and Skin: Part 1. Bibliometric Analysis and Review of the Impact of Exposome Approaches on Dermatology. Dermatol. Ther. 12, 345–359 (2022).

    Google Scholar 

  112. Molina-García, M. et al. Exposome and Skin. Part 2. The Influential Role of the Exposome, Beyond UVR, in Actinic Keratosis, Bowen’s Disease and Squamous Cell Carcinoma: A Proposal. Dermatol. Ther. 12, 361–380 (2022).

    Google Scholar 

Download references

Acknowledgements

We thank the WHO NTD department for map production. Additionally, we appreciate the assistance of Mr. Yorm Edem Doe and Miss Susanna Apraku for their help in organizing literature resources. HJ is supported, in part, by NSF Industry University Cooperative Research Center grant 2052788 and USDA NIFA grant 2023-67019-39248, and H.J. and M.E.B. were supported, in part, by the NSF-NIH-NIFA Ecology and Evolution of Infectious Disease program [DEB #1911457]; any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

  1. Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana

    Lydia Mosi

  2. West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana

    Lydia Mosi

  3. Mycobacterial Research Laboratory, The Leprosy Mission Nepal, Kathmandu, PO Box 151, Nepal

    Bishwanath Acharya

  4. Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland

    Kingsley Asiedu & Adeola Bamisaiye

  5. Department of Entomology, Department of Osteopathic Medical Specialties, AgBioResearch, Michigan State University, East Lansing, USA

    M. Eric Benbow

  6. Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana

    Dziedzom De Souza & Charles Quaye

  7. KEMRI-Wellcome Trust, Kilifi, Kenya and Nuffield Department of Medicine, University of Oxford, Oxford, UK

    Lynne Elson

  8. Mycetoma Research Center, Khartoum, Sudan

    Ahmed Fahal

  9. Kings College London, London, UK

    Roderick Hay

  10. Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya

    Ruth Nyangacha

  11. Department of Microbiology, Faculty of Life Sciences, Modibbo Adama University, Yola, Adamawa State, Nigeria

    Aisha Shitu Sa’id

  12. Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

    Dallas J. Smith

  13. Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA

    Heather Jordan

Authors
  1. Lydia Mosi
    View author publications

    Search author on:PubMed Google Scholar

  2. Bishwanath Acharya
    View author publications

    Search author on:PubMed Google Scholar

  3. Kingsley Asiedu
    View author publications

    Search author on:PubMed Google Scholar

  4. Adeola Bamisaiye
    View author publications

    Search author on:PubMed Google Scholar

  5. M. Eric Benbow
    View author publications

    Search author on:PubMed Google Scholar

  6. Dziedzom De Souza
    View author publications

    Search author on:PubMed Google Scholar

  7. Lynne Elson
    View author publications

    Search author on:PubMed Google Scholar

  8. Ahmed Fahal
    View author publications

    Search author on:PubMed Google Scholar

  9. Roderick Hay
    View author publications

    Search author on:PubMed Google Scholar

  10. Ruth Nyangacha
    View author publications

    Search author on:PubMed Google Scholar

  11. Charles Quaye
    View author publications

    Search author on:PubMed Google Scholar

  12. Aisha Shitu Sa’id
    View author publications

    Search author on:PubMed Google Scholar

  13. Dallas J. Smith
    View author publications

    Search author on:PubMed Google Scholar

  14. Heather Jordan
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H.J. and L.M. conceived and coordinated the conceptual framework for the manuscript. H.J., L.M., B.A., K.A., A.B., M.E.B., D.D., L.E., A.F., R.H., R.N., C.Q., A.S., and D.J.S. all contributed sections of the paper and/or critically reviewed, edited, and refined the various drafts of the manuscript.

Corresponding author

Correspondence to Heather Jordan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosi, L., Acharya, B., Asiedu, K. et al. Integrated action for skin NTDs: Deconstructing transmission, addressing knowledge gaps, and championing one health strategies. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69065-0

Download citation

  • Received: 01 August 2025

  • Accepted: 20 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69065-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing