Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Ultra-coherent meta-emitter tailors arbitrary thermal wavefront
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 January 2026

Ultra-coherent meta-emitter tailors arbitrary thermal wavefront

  • Rui Chen1,2,
  • Tianle Chen1,
  • Mengqi Liu  ORCID: orcid.org/0000-0001-5958-67023,
  • Xingsi Liu  ORCID: orcid.org/0009-0009-3967-53403,
  • Sen Zhang1,
  • Faizan Raza1,
  • Hongguang Dong1,
  • Yongdi Dang1,
  • Zejie Yu  ORCID: orcid.org/0000-0002-3067-39651,
  • Huan Hu  ORCID: orcid.org/0000-0002-1317-54702,
  • Jianbing Xu  ORCID: orcid.org/0000-0003-0509-95084,
  • Cheng-Wei Qiu  ORCID: orcid.org/0000-0002-6605-500X3,5 &
  • …
  • Yungui Ma  ORCID: orcid.org/0000-0002-1859-12111 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Metamaterials
  • Mid-infrared photonics

Abstract

Conventional coherent light-field manipulation techniques inherently conflict with the spatiotemporal incoherence of thermal radiation sources. While recent advances in thermophotonics have facilitated directional thermal emission, arbitrary thermal wavefront control—a cornerstone for advanced functionalities like focusing and holography—remains an unaddressed challenge. Here, we report a generalized recipe of designing meta-emitters with lossy and lossless outer boundaries, that enables thermal emission with arbitrarily tailored wavefront. Lossy and lossless surfaces on two sides of the meta-emitter are synergistically coupled by a single-mode waveguide, transforming incoherent thermal photons to coherent surface waves for wavefront shaping functionalities. Designer surface mode of meta-emitter permits the independent optimization of photon lifetime and propagation length, thus enabling scalable spatial coherence engineering. For the proof of concept, we experimentally demonstrate near-diffraction-limited self-focusing emission, quasi-two-dimensional (quasi-2D) high-quality thermal holography without speckle noise and spatial-multiplexed holography. Coupling optimization further suggests that spatial coherence exceeding 1000λ0 are achievable. Our proposed meta-emitter establishes a paradigm-shifting framework to integrate stochastic thermodynamic emission with precision photonic engineering, opening avenues for information-rich thermal radiation technologies.

Data availability

All the data in this study are provided within the paper and its supplementary information.

Code availability

All the code that supports the findings of this study is available from the corresponding author upon request.

References

  1. Planck, M. Ueber das Gesetz der Energieverteilung im Normalspectrum. Ann. Phys. 309, 553–563 (1901).

    Google Scholar 

  2. Bao, F. et al. Heat-assisted detection and ranging. Nature 619, 743–748 (2023).

    Google Scholar 

  3. Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    Google Scholar 

  4. Overvig, A. C., Mann, S. A. & Alù, A. Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions. Phys. Rev. X 11, 021050 (2021).

    Google Scholar 

  5. Carminati, R. & Greffet, J.-J. Near-field effects in spatial coherence of thermal sources. Phys. Rev. Lett. 82, 1660–1663 (1999).

    Google Scholar 

  6. Le Gall, J., Olivier, M. & Greffet, J.-J. Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton. Phys. Rev. B 55, 10105–10114 (1997).

    Google Scholar 

  7. Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    Google Scholar 

  8. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    Google Scholar 

  9. Lu, G. et al. Engineering the spectral and spatial dispersion of thermal emission via polariton–phonon strong coupling. Nano Lett. 21, 1831–1838 (2021).

    Google Scholar 

  10. Wang, T. et al. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics 4, 1753–1760 (2017).

    Google Scholar 

  11. Ma, B. et al. Narrowband diffuse thermal emitter based on surface phonon polaritons. Nanophotonics 11, 4115–4122 (2022).

    Google Scholar 

  12. Arnold, C. et al. Coherent thermal infrared emission by two-dimensional silicon carbide gratings. Phys. Rev. B 86, 035316 (2012).

    Google Scholar 

  13. Chalabi, H., Alù, A. & Brongersma, M. L. Focused thermal emission from a nanostructured SiC surface. Phys. Rev. B 94, 094307 (2016).

    Google Scholar 

  14. Park, J. H., Han, S. E., Nagpal, P. & Norris, D. J. Observation of thermal beaming from tungsten and molybdenum bull’s eyes. ACS Photonics 3, 494–500 (2016).

    Google Scholar 

  15. Han, S. E. & Norris, D. J. Beaming thermal emission from hot metallic bull’s eyes. Opt. Express 18, 4829–4837 (2010).

    Google Scholar 

  16. Lochbaum, A. et al. Compact mid-infrared gas sensing enabled by an all-metamaterial design. Nano Lett. 20, 4169–4176 (2020).

    Google Scholar 

  17. Wang, X. et al. Observation of nonvanishing optical helicity in thermal radiation from symmetry-broken metasurfaces. Sci. Adv. 9, eade4203 (2023).

    Google Scholar 

  18. Laroche, M. et al. Highly directional radiation generated by a tungsten thermal source. Opt. Lett. 30, 2623 (2005).

    Google Scholar 

  19. Dahan, N. et al. Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves. Phys. Rev. B 76, 045427 (2007).

    Google Scholar 

  20. Wang, K. et al. High-Q resonance engineering in momentum space for highly coherent and rainbow-free thermal emission. Nano Lett. 25, 3613–3619 (2025).

    Google Scholar 

  21. Nolen, J. R., Overvig, A. C., Cotrufo, M. & Alù, A. Local control of polarization and geometric phase in thermal metasurfaces. Nat. Nanotechnol. 19, 1627–1634 (2024).

    Google Scholar 

  22. Sun, K., Levy, U. & Han, Z. Exploiting zone-folding induced quasi-bound modes to achieve highly coherent thermal emissions. Nano Lett. 24, 764–769 (2023).

    Google Scholar 

  23. Sun, K., Cai, Y., Huang, L. & Han, Z. Ultra-narrowband and rainbow-free mid-infrared thermal emitters enabled by a flat band design in distorted photonic lattices. Nat. Commun. 15, 4019 (2024).

    Google Scholar 

  24. Sun, K., Yang, B., Cai, Y., Kivshar, Y. & Han, Z. Circularly polarized thermal emission driven by chiral flatbands in monoclinic metasurfaces. Sci. Adv. 11, eadw0986 (2025).

    Google Scholar 

  25. Cui, T.-J., Liu, S. & Li, L.-L. Information entropy of coding metasurface. Light Sci. Appl. 5, e16172 (2016).

    Google Scholar 

  26. Zhou, M. et al. Self-focused thermal emission and holography realized by mesoscopic thermal emitters. ACS Photonics 8, 497–504 (2021).

    Google Scholar 

  27. Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002).

    Google Scholar 

  28. Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    Google Scholar 

  29. Martín-Moreno, L., García-Vidal, F. J., Lezec, H. J., Degiron, A. & Ebbesen, T. W. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003).

    Google Scholar 

  30. Garcı́a-Vidal, F. J., Martı́n-Moreno, L., Lezec, H. J. & Ebbesen, T. W. Focusing light with a single subwavelength aperture flanked by surface corrugations. Appl. Phys. Lett. 83, 4500–4502 (2003).

    Google Scholar 

  31. Baranov, D. G. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).

    Google Scholar 

  32. Overvig, A., Mann, S. A. & Alù, A. Spatio-temporal coupled mode theory for nonlocal metasurfaces. Light Sci. Appl. 13, 28 (2024).

    Google Scholar 

  33. Pendry, J. B., Martín-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004).

    Google Scholar 

  34. Yu, N. et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nat. Mater. 9, 730–735 (2010).

    Google Scholar 

  35. Janssen, O. T. A., Urbach, H. P. &’T. & Hooft, G. W. Giant optical transmission of a subwavelength slit optimized using the magnetic field phase. Phys. Rev. Lett. 99, 043902 (2007).

  36. Chen, Y. Optical coherence and electromagnetic surface waves. Prog. Opt. 65, 105–172 (2020).

    Google Scholar 

  37. Wolf, E. Introduction to the Theory of Coherence and Polarization of Light. (Cambridge University Press, 2007).

  38. Tetienne, J.-P. et al. Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators. N. J. Phys. 13, 053057 (2011).

    Google Scholar 

  39. Chen, Y.-H., Huang, L., Gan, L. & Li, Z.-Y. Wavefront shaping of infrared light through a subwavelength hole. Light Sci. Appl. 1, e26–e26 (2012).

    Google Scholar 

  40. Komisar, D. et al. Multiple channelling single-photon emission with scattering holography designed metasurfaces. Nat. Commun. 14, 6253 (2023).

    Google Scholar 

  41. Liu, X. et al. Off-normal polarized single-photon emission with anisotropic holography metasurfaces. Nano Lett. 24, 13867–13873 (2024).

    Google Scholar 

  42. Li, C. et al. Near-field and far-field thermal emission of an individual patch nanoantenna. Phys. Rev. Lett. 121, 243901 (2018).

    Google Scholar 

  43. Wojszvzyk, L. et al. An incandescent metasurface for quasimonochromatic polarized mid-wave infrared emission modulated beyond 10 MHz. Nat. Commun. 12, 1492 (2021).

    Google Scholar 

  44. Zeng, Y. Metalasers with arbitrarily shaped wavefront. Nature 643, 1240–1245 (2025).

    Google Scholar 

  45. Georges, M., Zhao, Y. & Vandenrijt, J.-F. Holography in the invisible. From the thermal infrared to the terahertz waves: outstanding applications and fundamental limits. Light Adv. Manuf. 2, 1 (2022).

    Google Scholar 

  46. Wang, Z. et al. Excite spoof surface plasmons with tailored wavefronts using high‐efficiency terahertz metasurfaces. Adv. Sci. 7, 2000982 (2020).

    Google Scholar 

  47. Han, J. et al. Tailorable polarization‐dependent directional coupling of surface plasmons. Adv. Funct. Mater. 32, 211000 (2022).

  48. Wang, Z. et al. Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces. Opto-Electron. Sci. 4, 240024–240024 (2025).

    Google Scholar 

Download references

Acknowledgements

M.-Y.G. acknowledged the financial support by the Joint Funds of the National Natural Science Foundation of China (U24A20313), National Natural Science Foundation of China (62475234 and 62075196), National Key Research and Development Program of China (2024YFA1012600), Natural Science Foundation of Zhejiang Province LDT23F05014F05, Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2021R01001) and Fundamental Research Funds for the Central University (2021FZZX001-07). C.R. acknowledged the financial support by the National Natural Science Foundation of China (62405268) and Postdoctoral Fellowship Program of CPSF (GZC20232261). C.-W.Q. acknowledged the financial support by the Ministry of Education, Republic of Singapore (Grant No.: A-8002978-00-00, A-8002152-00-00 and A-8002458-00-00), the National Research Foundation, Singapore (NRF) under NRFs Medium Sized Centre: Singapore Hybrid-Integrated Next-Generation-Electronics (SHINE) Centre funding programme, and the Science and Technology Project of Jiangsu Province (Grant No. BZ2022056). J. B. X. acknowledged the support from AoE/P-701/20.

Author information

Authors and Affiliations

  1. State Key Lab of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China

    Rui Chen, Tianle Chen, Sen Zhang, Faizan Raza, Hongguang Dong, Yongdi Dang, Zejie Yu & Yungui Ma

  2. Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), Zhejiang University, Haining, Zhejiang, China

    Rui Chen & Huan Hu

  3. Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore

    Mengqi Liu, Xingsi Liu & Cheng-Wei Qiu

  4. Department of Electronic Engineering, Materials Science and Technology Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, China

    Jianbing Xu

  5. Nanotech Energy and Environment Platform, National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, China

    Cheng-Wei Qiu

Authors
  1. Rui Chen
    View author publications

    Search author on:PubMed Google Scholar

  2. Tianle Chen
    View author publications

    Search author on:PubMed Google Scholar

  3. Mengqi Liu
    View author publications

    Search author on:PubMed Google Scholar

  4. Xingsi Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Sen Zhang
    View author publications

    Search author on:PubMed Google Scholar

  6. Faizan Raza
    View author publications

    Search author on:PubMed Google Scholar

  7. Hongguang Dong
    View author publications

    Search author on:PubMed Google Scholar

  8. Yongdi Dang
    View author publications

    Search author on:PubMed Google Scholar

  9. Zejie Yu
    View author publications

    Search author on:PubMed Google Scholar

  10. Huan Hu
    View author publications

    Search author on:PubMed Google Scholar

  11. Jianbing Xu
    View author publications

    Search author on:PubMed Google Scholar

  12. Cheng-Wei Qiu
    View author publications

    Search author on:PubMed Google Scholar

  13. Yungui Ma
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.-Y.G. conceived the idea. C.-R., C.-T.L., Y.-ZJ, Z.-S., F. R., D.-H.G. and D.-Y.D. performed the experiments. C.-R. conducted all the calculations and simulations. C.-R., L.-M.Q., C.-W.Q., and M.-Y.G. analyzed the data and prepared the manuscript with assistance from L.-X.S. The project is supervised by H.-H., X.-J.B., M.-Y.G., and C.-W.Q. All the authors contributed to the manuscript revision.

Corresponding authors

Correspondence to Cheng-Wei Qiu or Yungui Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Michele Cotrufo, Zhanghua Han, Kaili Sun, and the other anonymous reviewer for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Chen, T., Liu, M. et al. Ultra-coherent meta-emitter tailors arbitrary thermal wavefront. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69088-7

Download citation

  • Received: 15 September 2025

  • Accepted: 26 January 2026

  • Published: 31 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-69088-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing