Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Scalable solution soaking quenching technique unlocks efficient and durable wide bandgap perovskite solar modules
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 February 2026

Scalable solution soaking quenching technique unlocks efficient and durable wide bandgap perovskite solar modules

  • Yuxuan Fang1,
  • Jinglin Sun2,
  • Ying Tan1,
  • Guo Yang1,
  • Huanyu Chen1,
  • Mingwei Gu1,
  • Yongbin Feng1,
  • Meifang Yang1,3,
  • Hong Liu4,
  • Jun Fang5,
  • Congcong Wu  ORCID: orcid.org/0000-0003-0771-28984,
  • Longbin Qiu  ORCID: orcid.org/0000-0002-7696-49015,
  • Jin Ge  ORCID: orcid.org/0000-0003-2405-47271,
  • Zhibin Yang  ORCID: orcid.org/0000-0003-4036-94462 &
  • …
  • Wu-Qiang Wu  ORCID: orcid.org/0000-0001-5414-56681 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemical engineering
  • Solar cells

Abstract

Wide-bandgap mixed-halide perovskite photovoltaic modules show strong potential for portable chargers, building-integrated photovoltaics, agrivoltaics, and tandem systems, but large-area processing exacerbates crystallization heterogeneity, surface defects, and halide phase segregation. Conventional spin-coating passivation fails to deliver uniform interfacial control at scale. Here, an industrially inspired solution-soaking quenching technique is introduced, in which hot blade-coated wide-bandgap perovskite films ( ~ 30 cm2) are immersed in cold SrI2/isopropanol. It enables rapid surface reconstruction and uniform surface passivation, enhances photoluminescence uniformity, improves crystallinity, reduces roughness, and stabilizes halides via gradient Sr2+ incorporation. These effects mitigate tensile stress, optimize energy-level alignment, and suppress light-induced phase separation. Methylammonium-free wide-bandgap small-area (0.04 cm2) devices achieve efficiencies up to 22.03%, while a 10.13 cm2 module delivers 20.32% efficiency with excellent operational stability. The method is versatile across wide-bandgap perovskite compositions and enables practical applications including portable chargers, semitransparent modules (18.41% bifacial equivalent efficiency), and >27% efficient all-perovskite tandem windows.

Data availability

All data generated in this study are provided in the main text and Supplementary Information or upon request from the corresponding author.

References

  1. Wang, Y. et al. Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635, 867–873 (2024).

    Google Scholar 

  2. National Renewable Energy Laboratory (NREL). Photovoltaic research, best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html (2026).

  3. Yang, M. et al. Chemical synergic stabilization of high Br-content mixed-halide wide-bandgap perovskites for durable multi-terminal tandem solar cells with minimized Pb leakage. Angew. Chem. Int. Ed. 64, e202415966 (2025).

    Google Scholar 

  4. Wang, Z. et al. Regulation of wide bandgap perovskite by rubidium thiocyanate for efficient silicon/perovskite tandem solar cells. Adv. Mater. 36, 2407681 (2024).

    Google Scholar 

  5. Kang, S. et al. Boosting carrier transport in quasi-2D/3D perovskite heterojunction for high-performance perovskite/organic tandems. Adv. Mater. 37, 2411027 (2025).

    Google Scholar 

  6. Scheler, F. et al. Correlation of band bending and ionic losses in 1.68 eV wide band gap perovskite solar cells. Adv. Energy Mater. 15, 2404726 (2024).

    Google Scholar 

  7. Wąsiak-Maciejak, A. et al. Compositional and interfacial engineering for improved light stability of flexible wide-bandgap perovskite solar cells. J. Mater. Chem. A 13, 7335–7346 (2025).

    Google Scholar 

  8. Feng, W. et al. Blade-coating (100)-oriented α-FAPbI3 perovskite films via crystal surface energy regulation for efficient and stable inverted perovskite photovoltaics. Angew. Chem. Int. Ed. 63, e202403196 (2024).

    Google Scholar 

  9. Duan, C. et al. Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells. Nat. Energy 10, 318–328 (2025).

    Google Scholar 

  10. Zhao, X. et al. Operationally stable perovskite solar modules enabled by vapor-phase fluoride treatment. Science 385, 433–438 (2024).

    Google Scholar 

  11. Deng, Y. et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3, 560–566 (2018).

    Google Scholar 

  12. Huang, C. et al. Meniscus-modulated blade coating enables high-quality α-phase formamidinium lead triiodide crystals and efficient perovskite minimodules. Joule 8, 2539–2553 (2024).

    Google Scholar 

  13. Liu, Q. et al. Enhancing the efficiency and stability of inverted perovskite solar cells and modules through top interface modification with n-type semiconductors. Angew. Chem. Int. Ed. 64, e202416390 (2025).

    Google Scholar 

  14. Wang, H. et al. Impurity-healing interface engineering for efficient perovskite submodules. Nature 634, 1091–1095 (2024).

    Google Scholar 

  15. Zhou, H. et al. Efficient and stable perovskite mini-module via high-quality homogeneous perovskite crystallization and improved interconnect. Nat. Commun. 15, 6679 (2024).

    Google Scholar 

  16. Zhou, S. et al. Aspartate all-in-one doping strategy enables efficient all-perovskite tandems. Nature 624, 69–73 (2023).

    Google Scholar 

  17. Zai, H. et al. Wafer-scale monolayer MoS2 film integration for stable, efficient perovskite solar cells. Science 387, 186–192 (2025).

    Google Scholar 

  18. Azam, M. et al. Tailoring pyridine bridged chalcogen-concave molecules for defects passivation enables efficient and stable perovskite solar cells. Nat. Commun. 16, 602 (2025).

    Google Scholar 

  19. Liu, Z. et al. Reducing perovskite/C60 interface losses via sequential interface engineering for efficient perovskite/silicon tandem solar cell. Adv. Mater. 36, 2308370 (2024).

    Google Scholar 

  20. Jiang, X. et al. Isomeric diammonium passivation for perovskite–organic tandem solar cells. Nature 635, 860–866 (2024).

    Google Scholar 

  21. Wang, C. et al. A wenzel interfaces design for homogeneous solute distribution obtains efficient and stable perovskite solar cells. Adv. Mater. 37, 2417779 (2025).

    Google Scholar 

  22. Yunker, P. J., Still, T., Lohr, M. A. & Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308–311 (2011).

    Google Scholar 

  23. Liao, X. et al. Methylammonium-free, high-efficiency, and stable all-perovskite tandem solar cells enabled by multifunctional rubidium acetate. Nat. Commun. 16, 1164 (2025).

    Google Scholar 

  24. Turren-Cruz, S.-H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).

    Google Scholar 

  25. Fakharuddin, A. et al. Inorganic and layered perovskites for optoelectronic devices. Adv. Mater. 31, 1807095 (2019).

    Google Scholar 

  26. Sha, H. et al. Probing carrier trapping and hysteresis at perovskite grain boundaries via in situ characterization. Opt. Mater. 139, 113817 (2023).

    Google Scholar 

  27. Ye, C. et al. Activating metal oxides nanocatalysts for electrocatalytic water oxidation by quenching-induced near-surface metal atom functionality. J. Am. Chem. Soc. 143, 14169–14177 (2021).

    Google Scholar 

  28. Dong, Q. et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 605, 470–476 (2022).

    Google Scholar 

  29. Mei, J. & Yan, F. Recent advances in wide-bandgap perovskite solar cells. Adv. Mater. 37, 2418622 (2025).

    Google Scholar 

  30. Kim, K., Moon, T. & Kim, J. Wide bandgap perovskites: a comprehensive review of recent developments and innovations. Small 21, 2407007 (2025).

    Google Scholar 

  31. Li, N. et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567 (2021).

    Google Scholar 

  32. Li, J. et al. Accelerating thermal transfer in perovskite films for high-efficiency and stable photovoltaics. Adv. Funct. Mater. 33, 2308036 (2023).

    Google Scholar 

  33. Zheng, Y. et al. Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation. Adv. Funct. Mater. 32, 2200431 (2022).

    Google Scholar 

  34. Datta, K. et al. Local halide heterogeneity drives surface wrinkling in mixed-halide wide-bandgap perovskites. Nat. Commun. 16, 1967 (2025).

    Google Scholar 

  35. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Google Scholar 

  36. Nie, T. et al. Advances in single-halogen wide-bandgap perovskite solar cells. Adv. Funct. Mater. 35, 2416264 (2025).

    Google Scholar 

  37. Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Google Scholar 

  38. Belisle, R. A. et al. Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Lett. 3, 2694–2700 (2018).

    Google Scholar 

  39. Wu, W.-Q. et al. Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J. Am. Chem. Soc. 142, 3989–3996 (2020).

    Google Scholar 

  40. Lu, Y.-N. et al. Constructing an n/n+ homojunction in a monolithic perovskite film for boosting charge collection in inverted perovskite photovoltaics. Energy Environ. Sci. 14, 4048–4058 (2021).

    Google Scholar 

  41. Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Google Scholar 

  42. Shai, X. et al. Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy 36, 213–222 (2017).

    Google Scholar 

  43. Zhao, Y. et al. Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells. J. Mater. Chem. A 7, 6877–6882 (2019).

    Google Scholar 

  44. Li, N. et al. Efficient and stable FA0.95Cs0.05PbI3 single-crystal perovskite solar cells via hierarchical elimination of surface iodide vacancies. ACS Nano 19, 42826–42834 (2025).

    Google Scholar 

  45. Simbula, A. et al. Exciton dissociation in 2D layered metal-halide perovskites. Nat. Commun. 14, 4125 (2023).

    Google Scholar 

  46. Huang, T. et al. Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 7, eabj1799 (2021).

    Google Scholar 

  47. Chen, Y. et al. Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385, 554–560 (2024).

    Google Scholar 

  48. Qin, M., Chan, P. F. & Lu, X. A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv. Mater. 33, 2105290 (2021).

    Google Scholar 

  49. Zhou, Q., Duan, J., Yang, X., Duan, Y. & Tang, Q. Interfacial strain release from the WS2/CsPbBr3 van der waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells. Angew. Chem. Int. Ed. 59, 21997–22001 (2020).

    Google Scholar 

  50. Wang, Y. et al. Lattice mismatch at the heterojunction of perovskite solar cells. Angew. Chem. Int. Ed. 63, e202405878 (2024).

    Google Scholar 

  51. Chang, X. et al. Two-second-annealed 2D/3D perovskite films with graded energy funnels and toughened heterointerfaces for efficient and durable solar cells. Angew. Chem. Int. Ed. 135, e202309292 (2023).

    Google Scholar 

  52. Wang, H. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 31, 1904408 (2019).

    Google Scholar 

  53. Muscarella, L. A. & Ehrler, B. The influence of strain on phase stability in mixed-halide perovskites. Joule 6, 2016–2031 (2022).

    Google Scholar 

  54. Wu, L. et al. Resilience pathways for halide perovskite photovoltaics under temperature cycling. Nat. Rev. Mater. 10, 536–549 (2025).

    Google Scholar 

  55. Li, L. et al. In-Situ polymer framework strategy enabling printable and efficient perovskite solar cells by mitigating “coffee ring” effect. Adv. Mater. 36, 2310752 (2024).

    Google Scholar 

  56. Ramirez, C., Yadavalli, S. K., Garces, H. F., Zhou, Y. & Padture, N. P. Thermo-mechanical behavior of organic-inorganic halide perovskites for solar cells. Scr. Mater. 150, 36–41 (2018).

    Google Scholar 

  57. Liu, G. et al. Synergic electron and defect compensation minimizes voltage loss in lead-free perovskite solar cells. Angew. Chem. Int. Ed. 62, e202305551 (2023).

    Google Scholar 

  58. Zhang, X. et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable Vis–NIR dual emission. J. Am. Chem. Soc. 142, 4464–4471 (2020).

    Google Scholar 

  59. Zhu, Z. et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: The role of graphene quantum dots. J. Am. Chem. Soc. 136, 3760–3763 (2014).

    Google Scholar 

  60. Hadke, S. et al. Suppressed deep traps and bandgap fluctuations in Cu2CdSnS4 solar cells with ≈8% efficiency. Adv. Energy Mater. 9, 1902509 (2019).

    Google Scholar 

  61. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Google Scholar 

  62. Liu, N. et al. Particle decoration enables solution-processed perovskite integration with fully-textured silicon for efficient tandem solar cells. Nat. Commun. 16, 9435 (2025).

    Google Scholar 

  63. Stolterfoht, M. et al. How to quantify the efficiency potential of neat perovskite films: Perovskite semiconductors with an implied efficiency exceeding 28%. Adv. Mater. 32, 2000080 (2020).

    Google Scholar 

  64. Nie, R. et al. Enhanced coordination interaction with multi-site binding ligands for efficient and stable perovskite solar cells. Nat. Commun. 16, 6438 (2025).

    Google Scholar 

  65. Mo, K. et al. Minimizing DMSO residues in perovskite films for efficient and long-term stable solar cells. Adv. Energy Mater. 15, 2404538 (2025).

    Google Scholar 

  66. Dong, Z. et al. Intermediate phase evolution for stable and oriented evaporated wide-bandgap perovskite solar cells. Nat. Mater. https://doi.org/10.1038/s41563-025-02375-8 (2025).

  67. Tan, Y. et al. Chemical linkage and passivation at buried interface for thermally stable inverted perovskite solar cells with efficiency over 22%. CCS Chem. 5, 1–13 (2022).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (grant number 2025YFE0106500 to W.-Q.W.), Guangzhou Science and Technology Programme (grant number 2024B03J1227 to W.-Q.W.), the Guangdong Basic and Applied Basic Research Foundation (grant numbers 2023B1515120008, 2024A1515011571 to W.-Q.W.), and the National Natural Science Foundation of China (grant number 52472115 to W.-Q.W.).

Author information

Authors and Affiliations

  1. Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, PR China

    Yuxuan Fang, Ying Tan, Guo Yang, Huanyu Chen, Mingwei Gu, Yongbin Feng, Meifang Yang, Jin Ge & Wu-Qiang Wu

  2. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China

    Jinglin Sun & Zhibin Yang

  3. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China

    Meifang Yang

  4. Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of New Energy and Electrical Engineering, Hubei University, Wuhan, PR China

    Hong Liu & Congcong Wu

  5. Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, PR China

    Jun Fang & Longbin Qiu

Authors
  1. Yuxuan Fang
    View author publications

    Search author on:PubMed Google Scholar

  2. Jinglin Sun
    View author publications

    Search author on:PubMed Google Scholar

  3. Ying Tan
    View author publications

    Search author on:PubMed Google Scholar

  4. Guo Yang
    View author publications

    Search author on:PubMed Google Scholar

  5. Huanyu Chen
    View author publications

    Search author on:PubMed Google Scholar

  6. Mingwei Gu
    View author publications

    Search author on:PubMed Google Scholar

  7. Yongbin Feng
    View author publications

    Search author on:PubMed Google Scholar

  8. Meifang Yang
    View author publications

    Search author on:PubMed Google Scholar

  9. Hong Liu
    View author publications

    Search author on:PubMed Google Scholar

  10. Jun Fang
    View author publications

    Search author on:PubMed Google Scholar

  11. Congcong Wu
    View author publications

    Search author on:PubMed Google Scholar

  12. Longbin Qiu
    View author publications

    Search author on:PubMed Google Scholar

  13. Jin Ge
    View author publications

    Search author on:PubMed Google Scholar

  14. Zhibin Yang
    View author publications

    Search author on:PubMed Google Scholar

  15. Wu-Qiang Wu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

W.-Q.W. and Y.F. conceived and designed the research. Y.F. carried out the fabrication and characterization of WBG PSCs and PSMs. J.S. and Y.T. helped to optimize WBG PSCs and PSMs. G.Y. carried out the fabrication and characterization of NBG PSCs and TSCs. Y.F. and H.C. carried out PL Steady-state and temperature-dependent steady-state PL measurements and data analysis. M.G. helped to optimize the semitransparent WBG PSM. Y.F., M.Y., and Y.F. carried out SEM and AFM measurements and data analysis. H.L. carried out GIWAXS measurement and data analysis. J.F. carried out GIXRD measurement and data analysis. C.W., L.Q., J.G., and Z.Y. helped with experimental design and data analysis. Y.F. and W.-Q.W. completed the writing of the manuscript. W.-Q.W. directed and supervised this project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Wu-Qiang Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Mingkui Wang, Hong Zhang and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Sun, J., Tan, Y. et al. Scalable solution soaking quenching technique unlocks efficient and durable wide bandgap perovskite solar modules. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69264-9

Download citation

  • Received: 17 June 2025

  • Accepted: 29 January 2026

  • Published: 16 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69264-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing