Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Strong magnon–photon coupling enhanced by photonic lattice flat-bands
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 February 2026

Strong magnon–photon coupling enhanced by photonic lattice flat-bands

  • Qi Hong  ORCID: orcid.org/0009-0004-6651-08281,
  • Jie Qian  ORCID: orcid.org/0000-0002-6542-06772,
  • Fujia Chen3,
  • Yihao Yang  ORCID: orcid.org/0000-0002-4287-01303 &
  • …
  • Yi-Pu Wang  ORCID: orcid.org/0000-0002-5883-62951 

Nature Communications , Article number:  (2026) Cite this article

  • 671 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Photonic crystals
  • Photonic devices
  • Polaritons
  • Quantum optics
  • Spintronics

Abstract

The high density of states corresponding to photonic flat bands offers a unique avenue for enhancing light–matter interactions, but despite their potential, flat-band continuous modes have largely focused on the weak-coupling or Purcell regimes. Here, we report experimentally achieve strong coupling between the photonic flat-band mode and a magnon mode in a ferrimagnetic spin ensemble. By using one-dimensional Lieb photonic lattices, we reveal that, in the strong-coupling regime, the mechanism underlying flat-band-enhanced interaction is analogous to Dicke superradiance. A localized bright mode is obtained by coherent combination of N degenerate flat-band modes, yielding an enhancement of coupling strength proportional to \(\sqrt{N}\), compared to systems without photonic flat bands. Remarkably, we observe flat-band-induced protection of the strong coupling against lattice-size scaling, an effect we term “coupling pinning”. Further enhancement is achieved by sandwiching the spin ensemble between two stacked Lieb layers, resulting in the hybridization of bright modes. Our results establish photonic flat bands as a promising and scalable platform for achieving and sustaining strong light–matter interactions, with potential for large-scale photonic integration and flat-band-enabled functionalities in hybrid systems.

Similar content being viewed by others

Realization of all-band-flat photonic lattices

Article Open access 19 February 2024

Photonic flatband resonances for free-electron radiation

Article 04 January 2023

Manipulating the long-range strong photon-magnon coupling via a saturable gain

Article Open access 10 January 2026

Data availability

The raw data generated in this study have been deposited in the Figshare database https://doi.org/10.6084/m9.figshare.29467952.

Code availability

The plotting codes used in this study have been deposited in the Figshare database https://doi.org/10.6084/m9.figshare.29467952.

References

  1. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).

    Google Scholar 

  2. Mielke, A. Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. A Math. Gen. 24, L73 (1991).

    Google Scholar 

  3. Flach, S., Leykam, D., Bodyfelt, J. D., Matthies, P. & Desyatnikov, A. S. Detangling flat bands into Fano lattices. Europhys. Lett. 105, 30001 (2014).

    Google Scholar 

  4. Rhim, J.-W. & Yang, B.-J. Classification of flat bands according to the band-crossing singularity of Bloch wave functions. Phys. Rev. B 99, 045107 (2019).

    Google Scholar 

  5. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Google Scholar 

  6. Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).

    Google Scholar 

  7. Wilson, S. D. & Ortiz, B. R. AV3Sb5 kagome superconductors. Nat. Rev. Mater. 9, 420–432 (2024).

    Google Scholar 

  8. Checkelsky, J. G., Bernevig, B. A., Coleman, P., Si, Q. & Paschen, S. Flat bands, strange metals and the Kondo effect. Nat. Rev. Mater. 9, 509–526 (2024).

    Google Scholar 

  9. Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in \({{{{\rm{Fe}}}}}_{3}{{{{\rm{Sn}}}}}_{2}\) kagome lattices. Phys. Rev. Lett. 121, 096401 (2018).

    Google Scholar 

  10. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Google Scholar 

  11. Yin, J.-X. et al. Negative flat band magnetism in a spin-orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    Google Scholar 

  12. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Google Scholar 

  13. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Google Scholar 

  14. Wakefield, J. P. et al. Three-dimensional flat bands in pyrochlore metal CaNi2. Nature 623, 301–306 (2023).

  15. Leykam, D., Alexei, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys. X 3, 1473052 (2018).

    Google Scholar 

  16. Vicencio Poblete, R. A. Photonic flat band dynamics. Adv. Phys. X 6, 1878057 (2021).

    Google Scholar 

  17. Vicencio, R. A. et al. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015).

    Google Scholar 

  18. Mukherjee, S. et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015).

    Google Scholar 

  19. Xia, S. et al. Unconventional flatband line states in photonic Lieb lattices. Phys. Rev. Lett. 121, 263902 (2018).

    Google Scholar 

  20. Mukherjee, S., Di Liberto, M., Öhberg, P., Thomson, R. R. & Goldman, N. Experimental observation of Aharonov-Bohm cages in photonic lattices. Phys. Rev. Lett. 121, 075502 (2018).

    Google Scholar 

  21. Rakich, P. T. et al. Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nat. Mater. 5, 93–96 (2006).

    Google Scholar 

  22. Settle, M. et al. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Opt. Express 15, 219–226 (2007).

    Google Scholar 

  23. Li, J., White, T. P., O’Faolain, L., Gomez-Iglesias, A. & Krauss, T. F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 16, 6227–6232 (2008).

    Google Scholar 

  24. Mao, X.-R., Shao, Z.-K., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

    Google Scholar 

  25. Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 624, 282–288 (2023).

    Google Scholar 

  26. Cui, J. et al. Ultracompact multibound-state-assisted flat-band lasers. Nat. Photonics 19, 643–649 (2025).

    Google Scholar 

  27. Yang, J. et al. Realization of all-band-flat photonic lattices. Nat. Commun. 15, 1484 (2024).

    Google Scholar 

  28. Ruggenthaler, M., Tancogne-Dejean, N., Flick, J., Appel, H. & Rubio, A. From a quantum-electrodynamical light-matter description to novel spectroscopies. Nat. Rev. Chem. 2, 0118 (2018).

    Google Scholar 

  29. Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Google Scholar 

  30. Gutzler, R., Garg, M., Ast, C. R., Kuhnke, K. & Kern, K. Light-matter interaction at atomic scales. Nat. Rev. Phys. 3, 441–453 (2021).

    Google Scholar 

  31. Fox, M. Quantum Optics: An Introduction (Oxford Academic, 2006).

  32. Yang, Y. et al. Photonic flatband resonances for free-electron radiation. Nature 613, 42–47 (2023).

    Google Scholar 

  33. Wang, Y.-T. et al. Moiré cavity quantum electrodynamics. Sci. Adv. 11, eadv8115 (2025).

    Google Scholar 

  34. Yan, S. et al. Cavity quantum electrodynamics with moiré photonic crystal nanocavity. Nat. Commun. 16, 4634 (2025).

    Google Scholar 

  35. Dovzhenko, D. S., Ryabchuk, S. V., Rakovich, Y. P. & Nabiev, I. R. Light-matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale 10, 3589–3605 (2018).

    Google Scholar 

  36. Flick, J., Rivera, N. & Narang, P. Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics 7, 1479–1501 (2018).

    Google Scholar 

  37. Liu, X. et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2015).

    Google Scholar 

  38. Samak, M. M. & Bilal, O. R. Direct observation of all-flat bands phononic metamaterials. Phys. Rev. Lett. 133, 266101 (2024).

    Google Scholar 

  39. Song, L. et al. Topological flatband loop states in fractal-like photonic lattices. Laser Photonics Rev. 17, 2200315 (2023).

    Google Scholar 

  40. Baboux, F. et al. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett. 116, 066402 (2016).

    Google Scholar 

  41. Real, B. et al. Flat-band light dynamics in stub photonic lattices. Sci. Rep. 7, 15085 (2017).

    Google Scholar 

  42. Chisnell, R. et al. Topological magnon bands in a kagome lattice ferromagnet. Phys. Rev. Lett. 115, 147201 (2015).

    Google Scholar 

  43. Schnack, J., Schulenburg, J., Honecker, A. & Richter, J. Magnon crystallization in the kagome lattice antiferromagnet. Phys. Rev. Lett. 125, 117207 (2020).

    Google Scholar 

  44. Cheng, C. et al. Magnon flatband effect in antiferromagnetically coupled magnonic crystals. Appl. Phys. Lett. 122, 082401 (2023).

    Google Scholar 

  45. Tacchi, S. et al. Experimental observation of flat bands in one-dimensional chiral magnonic crystals. Nano Lett. 23, 6776–6783 (2023).

    Google Scholar 

  46. Riberolles, S. X. M. et al. Chiral and flat-band magnetic quasiparticles in ferromagnetic and metallic kagome layers. Nat. Commun. 15, 1592 (2024).

    Google Scholar 

  47. Rojas-Rojas, S., Morales-Inostroza, L., Vicencio, R. A. & Delgado, A. Quantum localized states in photonic flat-band lattices. Phys. Rev. A 96, 043803 (2017).

    Google Scholar 

  48. Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).

    Google Scholar 

  49. Drost, R., Ojanen, T., Harju, A. & Liljeroth, P. Topological states in engineered atomic lattices. Nat. Phys. 13, 668–671 (2017).

    Google Scholar 

  50. Zhang, D. et al. Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. npj Quantum Inf. 1, 15014 (2015).

    Google Scholar 

  51. Zare Rameshti, B. et al. Cavity magnonics. Phys. Rep. 979, 1–61 (2022).

    Google Scholar 

  52. Yu, T., Zou, J., Zeng, B., Rao, J. & Xia, K. Non-Hermitian topological magnonics. Phys. Rep. 1062, 1–86 (2024).

    Google Scholar 

  53. Goryachev, M. et al. High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014).

    Google Scholar 

  54. Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–408 (2015).

    Google Scholar 

  55. Bai, L. et al. Spin pumping in electrodynamically coupled magnon-photon systems. Phys. Rev. Lett. 114, 227201 (2015).

    Google Scholar 

  56. Bhoi, B., Kim, B., Kim, J., Cho, Y.-J. & Kim, S.-K. Robust magnon-photon coupling in a planar-geometry hybrid of inverted split-ring resonator and YIG film. Sci. Rep. 7, 11930 (2017).

    Google Scholar 

  57. Hou, J. T. & Liu, L. Strong coupling between microwave photons and nanomagnet magnons. Phys. Rev. Lett. 123, 107702 (2019).

    Google Scholar 

  58. Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020).

    Google Scholar 

  59. Wang, Z.-Q. et al. Giant spin ensembles in waveguide magnonics. Nat. Commun. 13, 7580 (2022).

    Google Scholar 

  60. Rao, Z. et al. Braiding reflectionless states in non-Hermitian magnonics. Nat. Phys. 20, 1904–1911 (2024).

    Google Scholar 

  61. Wang, Y.-P. et al. Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120, 057202 (2018).

    Google Scholar 

  62. Wang, Y.-P. et al. Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett. 123, 127202 (2019).

    Google Scholar 

  63. Shen, R.-C., Li, J., Fan, Z.-Y., Wang, Y.-P. & You, J. Mechanical bistability in Kerr-modified cavity magnomechanics. Phys. Rev. Lett. 129, 123601 (2022).

    Google Scholar 

  64. Xu, D. et al. Quantum control of a single magnon in a macroscopic spin system. Phys. Rev. Lett. 130, 193603 (2023).

    Google Scholar 

  65. Wang, C. et al. Enhancement of magnonic frequency combs by exceptional points. Nat. Phys. 20, 1139–1144 (2024).

    Google Scholar 

  66. Xiong, Y. et al. Magnon-photon coupling in an opto-electro-magnonic oscillator. npj Spintron. 2, 9 (2024).

    Google Scholar 

  67. Li, W. et al. Topological surface magnon-polariton in an insulating canted antiferromagnet https://arxiv.org/abs/2510.08334 (2025).

  68. Chen, P. J., Iunin, Y. L., Cheng, S. F. & Shull, R. D. Underlayer effect on perpendicular magnetic anisotropy in Co20Fe60B20/MgO films. IEEE Trans. Magn. 52, 1–4 (2016).

    Google Scholar 

  69. Shen, R.-C. et al. Long-time memory and ternary logic gate using a multistable cavity magnonic system. Phys. Rev. Lett. 127, 183202 (2021).

    Google Scholar 

  70. Zhang, D., Luo, X.-Q., Wang, Y.-P., Li, T.-F. & You, J. Q. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun. 8, 1368 (2017).

    Google Scholar 

  71. Qian, J., Li, J., Zhu, S.-Y., You, J. & Wang, Y.-P. Probing PT-symmetry breaking of non-Hermitian topological photonic states via strong photon-magnon coupling. Phys. Rev. Lett. 132, 156901 (2024).

    Google Scholar 

  72. Huebl, H. et al. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013).

    Google Scholar 

  73. Tabuchi, Y. et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014).

    Google Scholar 

  74. Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014).

    Google Scholar 

  75. Zhang, X. et al. Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015).

    Google Scholar 

  76. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Google Scholar 

  77. Tavis, M. & Cummings, F. W. Exact solution for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968).

    Google Scholar 

  78. Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2020).

    Google Scholar 

  79. Lin, R., Tai, T., Li, L. & Lee, C. H. Topological non-hermitian skin effect. Front. Phys. 18, 53605 (2023).

    Google Scholar 

  80. El-Ganainy, R. et al. Non-hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Google Scholar 

  81. Li, A. et al. Exceptional points and non-hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).

    Google Scholar 

  82. Nakata, Y., Okada, T., Nakanishi, T. & Kitano, M. Observation of flat band for terahertz spoof plasmons in a metallic kagomé lattice. Phys. Rev. B 85, 205128 (2012).

    Google Scholar 

  83. Yamaguchi, K., Nakajima, M. & Suemoto, T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Phys. Rev. Lett. 105, 237201 (2010).

    Google Scholar 

  84. Seifert, T. S. et al. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy. Nat. Commun. 9, 2899 (2018).

    Google Scholar 

  85. Ye, Z. et al. Excitation-polarization-dependent dynamics of polariton condensates in the ZnO microwire at room temperature. J. Phys. Condens. Matter 34, 22LT01 (2022).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2022YFA1405200 and 2023YFA1406703 to Y.P.W.; No. 2022YFA1404900 to Y.H.Y.), the Zhejiang Provincial Natural Science Foundation of China (No. LR26A040001 to Y.P.W.), the National Natural Science Foundation of China (No. 92265202 to Y.P.W.), and the Fundamental Research Funds for the Central Universities (No. 2024FZZX02-01-02 to Y.P.W.).

Author information

Authors and Affiliations

  1. Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, China

    Qi Hong & Yi-Pu Wang

  2. Institute of Quantum Science and Precision Measurement, East China Normal University, Shanghai, China

    Jie Qian

  3. State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China

    Fujia Chen & Yihao Yang

Authors
  1. Qi Hong
    View author publications

    Search author on:PubMed Google Scholar

  2. Jie Qian
    View author publications

    Search author on:PubMed Google Scholar

  3. Fujia Chen
    View author publications

    Search author on:PubMed Google Scholar

  4. Yihao Yang
    View author publications

    Search author on:PubMed Google Scholar

  5. Yi-Pu Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.P.W. and Q.H. conceived the idea and initiated the research project. Q.H. designed the samples and performed the experiments with input from Y.P.W. and Y.H.Y. Q.H. carried out the data analysis under the discussion with Y.P.W. and Y.H.Y. Q.H., Y.P.W., and Y.H.Y. drafted the manuscript. J.Q. and F.J.C. were involved in the discussion of results and the final manuscript editing. Y.P.W. supervised the project.

Corresponding authors

Correspondence to Yihao Yang or Yi-Pu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Pedro Landeros and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review File

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Q., Qian, J., Chen, F. et al. Strong magnon–photon coupling enhanced by photonic lattice flat-bands. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69326-y

Download citation

  • Received: 09 October 2025

  • Accepted: 28 January 2026

  • Published: 06 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69326-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing