Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Orientation-dependent mutual crystalline and amorphous order in a single phase solid
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 February 2026

Orientation-dependent mutual crystalline and amorphous order in a single phase solid

  • Rui Xia1,2 na1,
  • Jiantao Li  ORCID: orcid.org/0000-0003-2277-849X3 na1,
  • Yorick A. Birkhölzer1 na1,
  • Haoyang Peng4,5,6 na1,
  • Kangning Zhao  ORCID: orcid.org/0000-0003-2916-43865,7 na1,
  • Ruohan Yu4,
  • Congli Sun4,5,
  • Lei Zhang4,
  • Qi Liu  ORCID: orcid.org/0000-0002-9377-85298,
  • Sungsik Lee  ORCID: orcid.org/0000-0002-1425-98529,
  • Tianyi Li  ORCID: orcid.org/0000-0002-6234-60969,
  • Yang Ren  ORCID: orcid.org/0000-0001-9831-603510,11,
  • Jie Zheng1,
  • Johan E. ten Elshof  ORCID: orcid.org/0000-0001-7995-65711 &
  • …
  • Mark Huijben  ORCID: orcid.org/0000-0001-8175-69581 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Nanowires
  • Structural properties

Abstract

Amorphous materials distinguish themselves from crystalline materials by lacking long-range order while retaining structural order at the local scale (2–5 Å). However, the complexity in topological and chemical order prevents current characterization tools from fully unveiling the structure in disordered materials. Consequently, the nature of medium-range order in amorphous materials has remained elusive. The Zachariasen and crystal competing models have been proposed to describe disordered phases and have both been verified through synthesis and characterization. The main difference between them is thought to be whether the amorphous phase shows medium-range order. Here we demonstrate a form of organized inorganic matter that is amorphous in two dimensions, while exhibiting long-range order and a high degree of crystallinity in the third. The structure consists of periodically stacked 2-dimensional amorphous Nb-W-O monolayers without long-range in-plane order. The unique periodic and therefore crystalline stacking along one principal axis enables direct imaging and revealed that the amorphous Nb-W-O monolayers formed in agreement with the Zachariasen model for 2 dimensions. Our findings show that the gap between crystalline and amorphous materials does not only depend on medium-range order but can also apply to principal dimensions within the same solid.

Data availability

The authors declare that the data and images supporting the findings of this study are available at Zenodo repository: https://doi.org/10.5281/zenodo.17588010.

References

  1. Elliott, S. R. Medium-range structural order in covalent amorphous solids. Nature 354, 445–452 (1991).

    Google Scholar 

  2. Price, D. L. Intermediate-range order in glasses. Curr. Opin. Solid State Mat. Sci. 1, 572–577 (1996).

    Google Scholar 

  3. Salmon, P. S. et al. Topological versus chemical ordering in network glasses at intermediate and extended length scales. Nature 435, 75–78 (2005).

    Google Scholar 

  4. Mavracic, J. et al. Similarity between amorphous and crystalline phases: the case of TiO2. J. Phys. Chem. Lett. 9, 2985–2990 (2018).

    Google Scholar 

  5. Toh, C.-T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).

    Google Scholar 

  6. Gibson, J. M. et al. Substantial crystalline topology in amorphous silicon. Phys. Rev. Lett. 105, 125504 (2010).

    Google Scholar 

  7. Joo, W. J. et al. Realization of continuous Zachariasen carbon monolayer. Sci. Adv. 3, e1601821 (2017).

    Google Scholar 

  8. Huang, P. Y. et al. Direct imaging of a two-dimensional silica glass on graphene. Nano Lett. 12, 1081–1086 (2012).

    Google Scholar 

  9. Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).

    Google Scholar 

  10. Tian, H. F. Disorder-tuned conductivity in amorphous monolayer carbon. Nature 615, 56–61 (2023).

    Google Scholar 

  11. Wang, J. et al. Chemical medium-range order in a medium-entropy alloy. Nat. Comm. 13, 1021 (2022).

    Google Scholar 

  12. Sheng, H. W. et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    Google Scholar 

  13. Lan, S. et al. A medium-range structure motif linking amorphous and crystalline states. Nat. Mater. 20, 1347–1352 (2021).

    Google Scholar 

  14. Hirata, A. et al. Direct observation of local atomic order in a metallic glass. Nat. Mater. 10, 28–33 (2011).

    Google Scholar 

  15. Hou, J. W. et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 374, 621–625 (2021).

    Google Scholar 

  16. Zachariasen, W. H. The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932).

    Google Scholar 

  17. Tu, Y. H. et al. Properties of a continuous-random-network model for amorphous systems. Phys. Rev. Lett. 81, 4899 (1998).

    Google Scholar 

  18. Yang, Y. et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60–64 (2021).

    Google Scholar 

  19. Yuan, Y. K. et al. Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nat. Mater. 21, 95–102 (2022).

    Google Scholar 

  20. Treacy, M. M. J. & Borisenko, K. B. The local structure of amorphous silicon. Science 335, 950–953 (2012).

    Google Scholar 

  21. MozeticÏ, M. et al. A method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures. Adv. Mater. 17, 2138 (2005).

    Google Scholar 

  22. Jana, S. & Rioux, R. M. Seeded growth induced amorphous to crystalline transformation of niobium oxide nanostructures. Nanoscale 4, 1782 (2012).

    Google Scholar 

  23. Betzler, S. B. Atomic resolution observation of the oxidation of niobium oxide nanowires: implications for renewable energy applications. ACS Appl. Nano Mater. 3, 9285 (2020).

    Google Scholar 

  24. Krumeich, F. The complex crystal chemistry of niobium tungsten oxides. Chem. Mater. 34, 911–934 (2022).

    Google Scholar 

  25. Iijima, S. & Allpress, J. G. Structural studies by high-resolution electron microscopy: tetragonal tungsten bronze-type structures in the system Nb2O5-WO3. Acta Crystallogr. A 30, 22–29 (1974).

    Google Scholar 

  26. Iijima, S. & Allpress, J. G. Structural studies by high-resolution electron microscopy: coherent intergrowth of the ReO3 and tetragonal tungsten bronze structure types in the system Nb2O5-WO3. Acta Crystallogr. A 30, 29–36 (1974).

    Google Scholar 

  27. Krumeich, F. On the arrangement of pentagonal columns in tetragonal tungsten bronze-type Nb18W16O93. Crystals 11, 1514 (2021).

    Google Scholar 

  28. Krumeich, F. Oxidation products of Nb7W10O47: a transmission electron microscopy study. J. Solid State Chem. 119, 420–427 (1995).

    Google Scholar 

  29. de Ridder, R. et al. Application of the cluster model to the study of ordering of atom strings in ternary W-Nb oxides. Phys. Status Solidi 41, 555–560 (1977).

    Google Scholar 

  30. Iijima, S. & Cowley, J. M. Studies of ordering using high resolution electron microscopy. J. Phys. Colloq. 38, C7–135 (1977).

    Google Scholar 

  31. Horiuchi, S., Muramatsu, K. & Matsui, Y. Circular diffuse scattering from a niobium tungsten bronze, 3Nb2O5.8WO3, studied by 1 MV high-resolution electron microscopy. J. Appl. Crystallogr. 13, 141–147 (1980).

    Google Scholar 

  32. de Ridder, R. et al. A cluster model for the transition state and its study by means of electron diffraction I. theoretical model. Phys. Status Solidi 38, 663–674 (1976).

    Google Scholar 

  33. Krumeich, F. Order and Disorder in niobium tungsten oxides of the tetragonal tungsten bronze type. Acta Crystallogr. B 54, 240–249 (1998).

    Google Scholar 

  34. Krumeich, F., Bartsch, C. & Gruehn, R. Oxidation products of Nb4W13O47: a transmission electron microscopy study. J. Solid State Chem. 120, 268–274 (1995).

    Google Scholar 

  35. Krumeich, F. TEM Evidence of a new tetragonal tungsten bronze superstructure. Z. Kristallogr. 212, 708–711 (1997).

    Google Scholar 

  36. Krumeich, F. & Nesper, R. Oxidation products of the niobium tungsten oxide Nb4W13O47: a high-resolution scanning transmission electron microscopy study. J. Solid State Chem. 179, 1857–1863 (2006).

    Google Scholar 

  37. Sundberg, M. & Lundberg, M. K5Nb9W2O31: A new tetragonal tungsten bronze related structure deduced from HREM images. Chem. Scr. 14, 161–168 (1988).

    Google Scholar 

  38. Iijama, S. Structural studies by high-resolution electron microscopy: intergrowth of ReO3 and tetragonal tungsten bronze type structures in the system Nb2O5-WO3. Acta Crystallogr. A 34, 922–931 (1978).

    Google Scholar 

  39. Krumeich, F. Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type. Z. Naturforsch. B 75, 913–919 (2020).

    Google Scholar 

  40. England, P. J. & Tilley, R. J. D. An electron microscopy study of some tetragonal tungsten bronze related phases in the Nb2O5-WO3, Ta2O5-WO3 and Nb2O5-Ta2O5-WO3 systems. Chem. Scr. 23, 15–22 (1984).

    Google Scholar 

  41. Sayagués, M. J., Krumeich, F. & Hutchison, J. L. Solid-gas reactions of complex oxides inside an environmental high resolution transmission electron microscope. Micron 32, 457–471 (2001).

    Google Scholar 

  42. Xia, R. et al. Enhanced lithiation dynamics in nanostructured Nb18W16O93 anodes. J. Power Sources 482, 228898 (2021).

    Google Scholar 

  43. Wang, S. T. et al. Pre-zeolite framework super-MIEC anodes for high-rate lithium-ion batteries. Energy Environ. Sci. 16, 241–251 (2023).

    Google Scholar 

  44. Bakradze, G., Kalinko, A. & Kuzmin, A. Evidence of nickel ions dimerization in NiWO4 and NiWO4-ZnWO4 solid solutions probed by EXAFS spectroscopy and reverse Monte Carlo simulations. Acta Mater. 217, 117171 (2021).

    Google Scholar 

  45. Stephenson, N. C. & Craig, D. C. The crystal structure of Nb8W9O47. Acta Crystallogr. B 25, 2071–2083 (1969).

    Google Scholar 

  46. Stephenson, N. C. A structural investigation of some stable phases in the region Nb2O5.WO3–WO3. Acta Crystallogr. B 24, 637–653 (1968).

    Google Scholar 

  47. Hussain, A., Woerle, M. & Krumeich, F. Superstructure and twinning in the tetragonal tungsten bronze-type phase Nb7W10O47. J. Solid State Chem. 149, 428–433 (2000).

    Google Scholar 

  48. Kuczyński, W., Żywucki, B. & Małecki, J. Determination of orientational order parameter in various liquid-crystalline phases. Mol. Cryst. Liq. Cryst. 381, 1–19 (2002).

    Google Scholar 

  49. Förster, S. et al. Quasicrystals and their approximants in 2D ternary oxides. Phys. Status Solidi (B) 257, 1900624 (2020).

    Google Scholar 

  50. Ruano-Merchan, C. et al. Stoichiometry-driven formation of two-dimensional ternary oxides: from quasicrystal approximants to honeycomb lattice structures. J. Phys. Chem. C. 128, 8839 (2024).

    Google Scholar 

  51. Iijima, S. et al. Atomic resolution imaging of cation ordering in niobium–tungsten complex oxides. Comm. Mater. 2, 24 (2021).

    Google Scholar 

  52. Iijima, S., Ohnishi, I. & Liu, Z. Atomic‑resolution STEM‑EDS studies of cation ordering in Ti‑Nb oxide crystals. Sci. Rep. 11, 18022 (2021).

    Google Scholar 

  53. Hong, Y. et al. A broad-spectrum gas sensor based on correlated two-dimensional electron gas. Nat. Commun. 14, 8496 (2023).

    Google Scholar 

  54. Chahine, G. A. et al. Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping. J. Appl. Crystallogr. 47, 762–769 (2014).

    Google Scholar 

Download references

Acknowledgements

R.X. and J.Z. acknowledge the financial support of the China Scholarships Council (CSC) program (No. 201807720013 and No. 201906150132), respectively. K.Z. acknowledges support by the National Natural Science Foundation of China (21905169) and Guangdong Basic and Applied Basic Research Foundation (2024A1515140075). C.S acknowledges for the STEM work performed at the Nanostructure Research Center (NRC) support by the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and the State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology). J.L., T.L. and S.L. acknowledge the use of resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02- 06CH11357. J.Z. and M.H. acknowledge financial support from the Dutch research council (NWO) under the VICI program 19909.

Author information

Author notes
  1. These authors contributed equally: Rui Xia, Jiantao Li, Yorick A. Birkhölzer, Haoyang Peng, Kangning Zhao.

Authors and Affiliations

  1. MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands

    Rui Xia, Yorick A. Birkhölzer, Jie Zheng, Johan E. ten Elshof & Mark Huijben

  2. College of New Energy and Electrical Engineering, Hubei University, Wuhan, P. R. China

    Rui Xia

  3. Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA

    Jiantao Li

  4. NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, P. R. China

    Haoyang Peng, Ruohan Yu, Congli Sun & Lei Zhang

  5. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China

    Haoyang Peng, Kangning Zhao & Congli Sun

  6. Yangtze Laboratory, Wuhan, China

    Haoyang Peng

  7. School of Physical Sciences, Great Bay University, Dongguan, P. R. China

    Kangning Zhao

  8. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China

    Qi Liu

  9. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA

    Sungsik Lee & Tianyi Li

  10. Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China

    Yang Ren

  11. Centre for Neutron Scattering, City University of Hong Kong, Kowloon, Hong Kong SAR, China

    Yang Ren

Authors
  1. Rui Xia
    View author publications

    Search author on:PubMed Google Scholar

  2. Jiantao Li
    View author publications

    Search author on:PubMed Google Scholar

  3. Yorick A. Birkhölzer
    View author publications

    Search author on:PubMed Google Scholar

  4. Haoyang Peng
    View author publications

    Search author on:PubMed Google Scholar

  5. Kangning Zhao
    View author publications

    Search author on:PubMed Google Scholar

  6. Ruohan Yu
    View author publications

    Search author on:PubMed Google Scholar

  7. Congli Sun
    View author publications

    Search author on:PubMed Google Scholar

  8. Lei Zhang
    View author publications

    Search author on:PubMed Google Scholar

  9. Qi Liu
    View author publications

    Search author on:PubMed Google Scholar

  10. Sungsik Lee
    View author publications

    Search author on:PubMed Google Scholar

  11. Tianyi Li
    View author publications

    Search author on:PubMed Google Scholar

  12. Yang Ren
    View author publications

    Search author on:PubMed Google Scholar

  13. Jie Zheng
    View author publications

    Search author on:PubMed Google Scholar

  14. Johan E. ten Elshof
    View author publications

    Search author on:PubMed Google Scholar

  15. Mark Huijben
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.X., K.Z., J.E., and M.H. conceived the project. R.X., K.Z., J.E., and M.H. co-wrote the manuscript. R.X. and J.Z. prepared the samples. R.X. performed RHEED analysis and applied the structural analysis. J.L., Q.L., S.L., T.L., and Y.R. carried out PDF, XANES, and EXAFS experiments and J.L. and K.Z. analyzed the data. Y.B. performed RSM experiments and Y.B. and R.X. analyzed the data. H.P., R.Y., and C.S. performed STEM and EDX analysis, H.P., R.Y., R.X., and K.Z. analyzed the data. R.X., K.Z., L.Z., J.Z., J.E., and M.H. revised the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kangning Zhao, Johan E. ten Elshof or Mark Huijben.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Rene Guinebretiere, Fan Zhu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Video 1

Supplementary Video 2

Supplementary Video 3

Supplementary Video 4

Supplementary Video 5

Supplementary Video 6

Supplementary Video 7

Supplementary Video 8

Supplementary Video 9

Supplementary Video 10

Supplementary Video 11

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, R., Li, J., Birkhölzer, Y.A. et al. Orientation-dependent mutual crystalline and amorphous order in a single phase solid. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69359-3

Download citation

  • Received: 16 April 2025

  • Accepted: 28 January 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69359-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing