Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Solventless, ambient-pressure production of bio-based lactones over earth-abundant, mixed metal oxide catalysts for circular polyesters
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Solventless, ambient-pressure production of bio-based lactones over earth-abundant, mixed metal oxide catalysts for circular polyesters

  • Daniyal Kiani  ORCID: orcid.org/0000-0002-9748-30071,2 na1,
  • Gloria Rosetto1 na1,
  • Faysal Ibrahim3,4,
  • Ozge Deniz Bozkurt5,
  • Ajinkya Pal2,6,
  • Elisabeth C. Van Roijen2,6,
  • Jason S. DesVeaux  ORCID: orcid.org/0000-0001-7926-63272,6,
  • Simon R. Bare  ORCID: orcid.org/0000-0002-4932-03425,
  • Ive Hermans3,4,7 &
  • …
  • Gregg T. Beckham  ORCID: orcid.org/0000-0002-3480-212X1,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Catalytic mechanisms
  • Chemical engineering
  • Heterogeneous catalysis
  • Reaction mechanisms

Abstract

Transitioning to a circular plastics economy will require use of renewable feedstocks, energy-efficient processes, and closed-loop recyclable polymers, such as polyesters. A key challenge lies in sustainably sourcing monomers used to make recyclable polyesters. This work presents a catalytic platform utilizing earth-abundant Cu(x)Ca(1-x)O mixed metal oxides for the oxidative dehydrocyclization of bio-based diols to lactones, which are advantaged for energy-efficient ring-opening polymerization. Operating below 200 °C, at ambient pressure, and without solvent, the process uses air as the sole oxidant, achieving high yields of lactones across a broad substrate scope of C4-8 diols in the liquid phase. The oxidative dehydrocyclization reaction is thermodynamically downhill due to water formation and energy-efficient compared to incumbent, non-redox pathways utilized in fossil carbon-based industrial processes for lactone production. Mechanistic studies reveal facile redox cycling of Cu2+-O(Ca2+)-Cu2+ interfacial sites unique to the developed catalyst. Techno-economic analysis and life cycle assessment estimate 40% lower energy demand and 15% lower GHG intensity per mass of butyrolactone produced compared to the fossil carbon-based route. Liquid-phase oxidative dehydrocyclization offers a promising approach for scalable lactone production from renewable, bio-based diols to enable circular polyesters.

Similar content being viewed by others

Fully lignocellulose-based PET analogues for the circular economy

Article Open access 13 June 2022

Biorenewable and circular polydiketoenamine plastics

Article 27 July 2023

Sustainable polyolefin upcycling using liquid organic hydrogen carrier based hydrogen delivery and hydrocracking

Article Open access 24 December 2025

Data availability

All data are available from the corresponding author, Gregg T. Beckham (gregg.beckham@nlr.gov), upon request. Additionally, supplementary experimental details regarding the reaction setup, additional experimental results including NMR spectra, product inhibition studies, IR spectra, ICP-OES results, process-flow diagram and TEA/LCA details. Supplementary data tables also contain numerical data from Fig. 3 and Fig. 6 of main text.

References

  1. Karali, N., Khanna, N. & Shah, N. Climate Impact of Primary Plastic Production (Lawrence Berkeley National Laboratory, 2024).

  2. Aarsen, C. V., Liguori, A., Mattsson, R., Sipponen, M. H. & Hakkarainen, M. Designed to degrade: tailoring polyesters for circularity. Chem. Rev. 124, 8473–8515 (2024).

    Google Scholar 

  3. Hong, M. & Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8, 42–49 (2016).

    Google Scholar 

  4. Tang, X. & Chen, E. Y. X. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 9, 2345 (2018).

    Google Scholar 

  5. Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Google Scholar 

  6. Shi, C. et al. Design principles for intrinsically circular polymers with tunable properties. Chem 7, 2896–2912 (2021).

    Google Scholar 

  7. Li, X.-L. et al. Dual recycling of depolymerization catalyst and biodegradable polyester that markedly outperforms polyolefins. Angew. Chem. Int. Ed. 62, e202303791 (2023).

    Google Scholar 

  8. Zhang, Z., Gowda, R. R. & Chen, E. Y. X. Chemosynthetic P4HB: a ten-year journey from a “non-polymerizable” monomer to a high-performance biomaterial. Acc. Mater. Res. 5, 1340–1352 (2024).

    Google Scholar 

  9. Zhou, L. et al. Chain-end controlled depolymerization selectivity in α,α-disubstituted propionate PHAs with dual closed-loop recycling and record-high melting temperature. J. Am. Chem. Soc. 146, 29895–29904 (2024).

    Google Scholar 

  10. Kim, M. S. et al. A review of biodegradable plastics: chemistry, applications, properties, and future research needs. Chem. Rev. 123, 9915–9939 (2023).

    Google Scholar 

  11. Lowe, J. R., Martello, M. T., Tolman, W. B. & Hillmyer, M. A. Functional biorenewable polyesters from carvone-derived lactones. Polym. Chem. 2, 702–708 (2011).

    Google Scholar 

  12. Cortright, R. D., Davda, R. R. & Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002).

    Google Scholar 

  13. He, J. et al. New catalytic strategies for α,ω-diols production from lignocellulosic biomass. Faraday Discuss. 202, 247–267 (2017).

    Google Scholar 

  14. Burt, S. P. et al. Production of 1,6-hexanediol from tetrahydropyran-2-methanol by dehydration–hydration and hydrogenation. Green. Chem. 19, 1390–1398 (2017).

    Google Scholar 

  15. Huang, K. et al. Conversion of furfural to 1,5-pentanediol: process synthesis and analysis. ACS Sustain. Chem. Eng. 5, 4699–4706 (2017).

    Google Scholar 

  16. Eagan, N. M., Kumbhalkar, M. D., Buchanan, J. S., Dumesic, J. A. & Huber, G. W. Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nat. Rev. Chem. 3, 223–249 (2019).

    Google Scholar 

  17. Stadler, B. M., Wulf, C., Werner, T., Tin, S. & de Vries, J. G. Catalytic approaches to monomers for polymers based on renewables. ACS Catal. 9, 8012–8067 (2019).

    Google Scholar 

  18. Kiani, D. et al. Production of bio-based lactones as monomers for circular polymers. Nat. Rev. Chem. 9, 749–765 (2025).

    Google Scholar 

  19. Krishna, S. H. et al. Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles. AIChE J. 64, 1910–1922 (2018).

    Google Scholar 

  20. Cargill. Bio-based coatings, https://www.cargill.com/bioindustrial/coatings (2025).

  21. ACS. Cargill to build biobased 1,4-butanediol plant, https://pubs.acs.org/doi/10.1021/cen-09922-buscon2 (2021).

  22. Gantrade. Bio-Based 1,4-Butanediol (BDO), https://www.gantrade.com/products/bio-based-14-butanediol-bdo (2025).

  23. Geno. Bio-based BDO, https://www.genomatica.com/products/ (2025).

  24. Tan, X. et al. Lactonization of diols over highly efficient metal-based catalysts. ChemSusChem n/a, e202400909 (2024).

    Google Scholar 

  25. Ichikawa, N., Sato, S., Takahashi, R., Sodesawa, T. & Inui, K. Dehydrogenative cyclization of 1,4-butanediol over copper-based catalyst. J. Mol. Catal. A Chem. 212, 197–203 (2004).

    Google Scholar 

  26. Huang, J., Dai, W.-L., Li, H. & Fan, K. Au/TiO2 as high efficient catalyst for the selective oxidative cyclization of 1,4-butanediol to γ-butyrolactone. J. Catal. 252, 69–76 (2007).

    Google Scholar 

  27. Huang, J., Wang, Y., Zheng, J., Dai, W.-L. & Fan, K. Influence of support surface basicity and gold particle size on catalytic activity of Au/γ-AlOOH and Au/γ-Al2O3 catalyst in aerobic oxidation of α,ω-diols to lactones. Appl. Catal. B Environ. 103, 343–350 (2011).

    Google Scholar 

  28. Huang, Z. et al. Hydrogenation of γ-butyrolactone to 1,4-butanediol over CuCo/TiO2 bimetallic catalysts. ACS Catal. 7, 8429–8440 (2017).

    Google Scholar 

  29. Schwarz, W., Schossig, J., Rossbacher, R., Pinkos, R. & Höke, H. In Ullmann’s Encyclopedia of Industrial Chemistry 1–7 (Wiley, 2019).

  30. Jochen, H. et al. Dehydrogenation of 1,4-butanediol to γ-butyrolactone. USA patent (1999).

  31. Touchy, A. S. & Shimizu, K. -i Acceptorless dehydrogenative lactonization of diols by Pt-loaded SnO2 catalysts. RSC Adv. 5, 29072–29075 (2015).

    Google Scholar 

  32. Tana, T. et al. Non-plasmonic metal nanoparticles as visible light photocatalysts for the selective oxidation of aliphatic alcohols with molecular oxygen at near ambient conditions. Chem. Commun. 52, 11567–11570 (2016).

    Google Scholar 

  33. Torrubia, J., Valero, A. & Valero, A. Energy and carbon footprint of metals through physical allocation. Implications for energy transition. Resour. Conserv. Recycling 199, 107281 (2023).

    Google Scholar 

  34. Han, L. et al. Multifunctional high-entropy materials. Nat. Rev. Mater. 9, 846–865 (2024).

    Google Scholar 

  35. Zhong, W., Liu, H., Bai, C., Liao, S. & Li, Y. Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts. ACS Catal. 5, 1850–1856 (2015).

    Google Scholar 

  36. Tang, D. et al. Aerobic oxidative lactonization of diols at room temperature over defective titanium-based oxides in water. J. Catal. 418, 237–246 (2023).

    Google Scholar 

  37. Bagley, M. C., Lin, Z., Phillips, D. J. & Graham, A. E. Barium manganate in microwave-assisted oxidation reactions: synthesis of lactones by oxidative cyclization of diols. Tetrahedron Lett. 50, 6823–6825 (2009).

    Google Scholar 

  38. Bhanushali, J. T. et al. Tailoring the catalytic activity of basic mesoporous Cu/CeO2 catalyst by Al2O3 for selective lactonization and dehydrogenation of 1,4-butanediol to γ-butyrolactone. Catal. Commun. 143, 106049 (2020).

    Google Scholar 

  39. Mitran, G., Nguyen, T. L. P. & Seo, D.-K. Effect of solvent, in the sol–gel synthesis of CoAl2O4, on the structure and catalytic properties in 1,4-butanediol dehydrocyclization. React. Chem. Eng. 8, 1901–1913 (2023).

    Google Scholar 

  40. Bhatia, A., Kannan, M. & Muthaiah, S. Ruthenium-promoted acceptorless and oxidant-free lactone synthesis in aqueous medium. Synlett 30, 721–725 (2019).

    Google Scholar 

  41. Liu, H., Jiang, Y., Zhao, H. & Hou, Z. Preparation of highly dispersed Cu catalysts from hydrotalcite precursor for the dehydrogenation of 1,4-butanediol. J. Ind. Eng. Chem. 102, 251–259 (2021).

    Google Scholar 

  42. Schweitzer, N. M., Gounder, R. & Rioux, R. M. Addressing Rigor and Reproducibility in Thermal, Heterogeneous Catalysis (1.00). Zenodo https://doi.org/10.5281/zenodo.8029159 (2023).

  43. Kiani, D. & Wachs, I. E. Practical considerations for understanding surface reaction mechanisms involved in heterogeneous catalysis. ACS Catal. 14, 16770–16784 (2024).

    Google Scholar 

  44. Danks, A. E., Hall, S. R. & Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91–112 (2016).

    Google Scholar 

  45. Kiani, D. & Wachs, I. E. The conundrum of “Pair Sites” in Langmuir–Hinshelwood reaction kinetics in heterogeneous catalysis. ACS Catal. 14, 10260–10270 (2024).

    Google Scholar 

  46. Kiani, D., Ibrahim, F., Hayden, S., Hermans, I. & Beckham, G. T. Understanding the origin of negative temperature dependence and activity of N-coordinated cobalt sites during ethylene dimerization. Appl. Catal. B Environ. Energy 365, 124952 (2025).

    Google Scholar 

  47. Madon, R. J. & Boudart, M. Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions. Ind. Eng. Chem. Fundam. 21, 438–447 (1982).

    Google Scholar 

  48. Li, K. & Xue, D. Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 110, 11332–11337 (2006).

    Google Scholar 

  49. Di Castro, D. et al. Raman spectroscopy study of the interface structure in (CaCuO2)n/(SrTiO3)m superlattices. Appl. Phys. Lett. 103, 191903 (2013).

  50. Kan, D., Yamanaka, A., Terashima, T. & Takano, M. Preparation and optical properties of single-crystalline CaCuO2 thin films with infinite layer structure. Phys. C Superconductivity 412-414, 298–302 (2004).

    Google Scholar 

  51. Fouad, O. A. et al. Synthesis, characterization and application of some nanosized mixed metal oxides as high heat resistant pigments: Ca2CuO3, Ca3Co2O6, and NiSb2O6. J. Alloy. Compd. 537, 165–170 (2012).

    Google Scholar 

  52. Chakrabarti, A. & Wachs, I. E. Molecular structure–reactivity relationships for olefin metathesis by Al2O3-supported surface MoOx sites. ACS Catal. 8, 949–959 (2018).

    Google Scholar 

  53. Kiani, D. & Baltrusaitis, J. A spectroscopic study of supported-phosphate-catalysts (SPCs): evidence of surface-mediated hydrogen-transfer. ChemCatChem 13, 2064–2073 (2021).

    Google Scholar 

  54. Bravo-Suárez, J. J., Subramaniam, B. & Chaudhari, R. V. Ultraviolet–visible spectroscopy and temperature-programmed techniques as tools for structural characterization of Cu in CuMgAlOx mixed metal oxides. J. Phys. Chem. C. 116, 18207–18221 (2012).

    Google Scholar 

  55. Angelici, C., Velthoen, M. E. Z., Weckhuysen, B. M. & Bruijnincx, P. C. A. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO2–MgO catalysts. ChemSusChem 7, 2505–2515 (2014).

    Google Scholar 

  56. Smeets, P. J., Groothaert, M. H. & Schoonheydt, R. A. Cu based zeolites: a UV–vis study of the active site in the selective methane oxidation at low temperatures. Catal. Today 110, 303–309 (2005).

    Google Scholar 

  57. Giordanino, F. et al. Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios. Dalton Trans. 42, 12741–12761 (2013).

    Google Scholar 

  58. Lezcano-Gonzalez, I. et al. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems. Phys. Chem. Chem. Phys. 16, 1639–1650 (2014).

    Google Scholar 

  59. Gu, M. et al. Structure–activity relationships of copper- and potassium-modified iron oxide catalysts during reverse water–gas shift reaction. ACS Catal. 11, 12609–12619 (2021).

    Google Scholar 

  60. Wang, B., Jin, M., An, H., Guo, Z. & Lv, Z. Hydrogenation performance of acetophenone to 1-phenylethanol on highly active nano Cu/SiO2 catalyst. Catal. Lett. 150, 56–64 (2020).

    Google Scholar 

  61. Fierro, G. et al. A study of anomalous temperature-programmed reduction profiles of Cu2O, CuO, and CuO-ZnO catalysts. J. Catal. 148, 709–721 (1994).

    Google Scholar 

  62. Kim, J. Y., Rodriguez, J. A., Hanson, J. C., Frenkel, A. I. & Lee, P. L. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 125, 10684–10692 (2003).

    Google Scholar 

  63. Villarroel-Rocha, J. & Gil, A. Modeling the temperature-programmed reduction of metal oxide catalysts by considering the particle-size distribution effect. Chem. Eng. J. 487, 150722 (2024).

    Google Scholar 

  64. Klissurski, D. & Rives, V. High-temperature superconductors in catalysis. Appl. Catal. A Gen. 109, 1–44 (1994).

    Google Scholar 

  65. Satam, C. C., Daub, M. & Realff, M. J. Techno-economic analysis of 1,4-butanediol production by a single-step bioconversion process. Biofuels Bioprod. Bioref. 13, 1261–1273 (2019).

    Google Scholar 

  66. United States Census Bureau USA Trade Import and Export Data, https://usatrade.census.gov/ (2025).

  67. van Bree, R. A. B. & Kroes, G. J. O2 dissociation on Cu(111) dynamics on a novel screened hybrid van der Waals DFT potential energy surface. J. Phys. Chem. C. 128, 19182–19196 (2024).

    Google Scholar 

  68. Junell, P., Ahonen, M., HirsimÄKi, M. & Valden, M. Influence of surface modification on the adsorption dynamics of O2 on Cu{100}. Surf. Rev. Lett. 11, 457–461 (2004).

    Google Scholar 

  69. Hodgson, A., Lewin, A. K. & Nesbitt, A. Dissociative chemisorption of O2 on Cu(110). Surf. Sci. 293, 211–226 (1993).

    Google Scholar 

  70. Orozco, I. et al. In situ studies of methanol decomposition over Cu(111) and Cu2O/Cu(111): effects of reactant pressure, surface morphology, and hot spots of active sites. J. Phys. Chem. C. 125, 558–571 (2021).

    Google Scholar 

  71. Seo, W.-W., Yim, J.-H., Kang, J. W. & Lim, J. S. Isobaric vapor–liquid equilibrium data of binary mixtures of [water + 2,3-butanediol] and [water + 1,4-butanediol] at 40, 50, 60, 66.7, 80, and 101 kPa. Korean J. Chem. Eng. 41, 1457–1466 (2024).

    Google Scholar 

  72. Xu, G. & Wang, Q. Chemically recyclable polymer materials: polymerization and depolymerization cycles. Green. Chem. 24, 2321–2346 (2022).

    Google Scholar 

  73. Liu, Y., Wu, J., Hu, X., Zhu, N. & Guo, K. Advances, Challenges, and Opportunities of Poly(γ-butyrolactone)-Based Recyclable Polymers. ACS Macro Lett. 10, 284–296 (2021).

    Google Scholar 

  74. Cargill to build biobased 1,4-butanediol plant. CEN Glob. Enterp. 99, 10–10 (2021).

    Google Scholar 

  75. Mutel, C. Brightway: an open source framework for life cycle assessment. J. Open Source Softw. 2, 236 (2017).

    Google Scholar 

  76. Steubing, B., De Koning, D., Haas, A. & Mutel, C. L. The activity browser—an open source LCA software building on top of the brightway framework. Softw. Impacts 3, 100012 (2020).

    Google Scholar 

  77. Huijbregts, M. A. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life cycle Assess. 22, 138–147 (2017).

    Google Scholar 

  78. Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Google Scholar 

  79. Mokwatlo, S. C. et al. Bioprocess development and scale-up for cis,cis-muconic acid production from glucose and xylose by Pseudomonas putida. Green. Chem. 26, 10152–10167 (2024).

    Google Scholar 

  80. Uekert, T. et al. Life cycle assessment of enzymatic poly(ethylene terephthalate) recycling. Green. Chem. 24, 6531–6543 (2022).

    Google Scholar 

  81. Padanyi, Z. V. The Raman spectrum of Ca(OH)2. Solid State Commun. 8, 541–543 (1970).

    Google Scholar 

  82. Balachandran, U. & Eror, N. G. Laser-induced Raman scattering in calcium titanate. Solid State Commun. 44, 815–818 (1982).

    Google Scholar 

  83. Lu, B. et al. Spatially resolved product speciation during struvite synthesis from magnesite (MgCO3) particles in ammonium (NH4+) and phosphate (PO43–) aqueous solutions. J. Phys. Chem. C. 123, 8908–8922 (2019).

    Google Scholar 

  84. Xu, J. F. et al. Raman spectra of CuO nanocrystals. J. Raman Spectrosc. 30, 413–415 (1999).

    Google Scholar 

  85. Deng, Y., Handoko, A. D., Du, Y., Xi, S. & Yeo, B. S. In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of cuiii oxides as catalytically active species. ACS Catal. 6, 2473–2481 (2016).

    Google Scholar 

  86. Luo, M.-F., Fang, P., He, M. & Xie, Y.-L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J. Mol. Catal. A Chem. 239, 243–248 (2005).

    Google Scholar 

  87. Xia, Y., Yuan, P., Zhang, Y., Sun, Y. & Hong, M. Converting non-strained γ-valerolactone and derivatives into sustainable polythioesters via isomerization-driven cationic ring-opening polymerization of thionolactone intermediate. Angew. Chem. Int. Ed. 62, e202217812 (2023).

    Google Scholar 

  88. Yuan, P. et al. Library of stereoregular polythioesters for stereocomplex formation enabled by isomerization-driven cationic ring-opening polymerization. Angew. Chem. Int. Ed. e202501485, https://doi.org/10.1002/anie.202501485.

  89. Li, X.-L., Clarke, R. W., Jiang, J.-Y., Xu, T.-Q. & Chen, E. Y. X. A circular polyester platform based on simple gem-disubstituted valerolactones. Nat. Chem. 15, 278–285 (2023).

    Google Scholar 

  90. Schneiderman, D. K. et al. Chemically recyclable biobased polyurethanes. ACS Macro Lett. 5, 515–518 (2016).

    Google Scholar 

  91. Brutman, J. P., De Hoe, G. X., Schneiderman, D. K., Le, T. N. & Hillmyer, M. A. Renewable, degradable, and chemically recyclable cross-linked elastomers. Ind. Eng. Chem. Res. 55, 11097–11106 (2016).

    Google Scholar 

  92. Ho, J. et al. Regional Energy Deployment System (reeds) Model Documentation (version 2020) (National Renewable Energy Lab.(NREL), Golden, CO (United States), 2021).

Download references

Acknowledgements

Funding was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technologies Office (AMMTO), and Bioenergy Technologies Office (BETO). This work was performed as part of the BioOptimized Technologies to keep Thermoplastics out of Landfills and the Environment (BOTTLE) Consortium and was supported by AMMTO and BETO at the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The BOTTLE Consortium includes members from SLAC. D.K. was in part supported by the Director’s Fellowship - Laboratory Directed Research and Development (LDRD) Program at NREL. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. We thank Professor Eugene Chen (CSU) and Dr. Tobias Hull (NREL) for their insightful comments and discussion.

Author information

Author notes
  1. These authors contributed equally: Daniyal Kiani, Gloria Rosetto.

Authors and Affiliations

  1. Renewable Resources and Enabling Sciences Center, National Laboratory of the Rockies, Golden, CO, USA

    Daniyal Kiani, Gloria Rosetto & Gregg T. Beckham

  2. BOTTLE Consortium, Golden, CO, USA

    Daniyal Kiani, Ajinkya Pal, Elisabeth C. Van Roijen, Jason S. DesVeaux & Gregg T. Beckham

  3. Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA

    Faysal Ibrahim & Ive Hermans

  4. Ralph O’Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD, USA

    Faysal Ibrahim & Ive Hermans

  5. SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

    Ozge Deniz Bozkurt & Simon R. Bare

  6. Catalytic Carbon Transformation and Scale-up Center, National Laboratory of the Rockies, Golden, CO, USA

    Ajinkya Pal, Elisabeth C. Van Roijen & Jason S. DesVeaux

  7. Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA

    Ive Hermans

Authors
  1. Daniyal Kiani
    View author publications

    Search author on:PubMed Google Scholar

  2. Gloria Rosetto
    View author publications

    Search author on:PubMed Google Scholar

  3. Faysal Ibrahim
    View author publications

    Search author on:PubMed Google Scholar

  4. Ozge Deniz Bozkurt
    View author publications

    Search author on:PubMed Google Scholar

  5. Ajinkya Pal
    View author publications

    Search author on:PubMed Google Scholar

  6. Elisabeth C. Van Roijen
    View author publications

    Search author on:PubMed Google Scholar

  7. Jason S. DesVeaux
    View author publications

    Search author on:PubMed Google Scholar

  8. Simon R. Bare
    View author publications

    Search author on:PubMed Google Scholar

  9. Ive Hermans
    View author publications

    Search author on:PubMed Google Scholar

  10. Gregg T. Beckham
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, D.K., G.R., G.T.B.; methodology, D.K., G.R., F.I., O.B., J.S.D., A.P., E.V.R.; investigation, D.K., G.R., O.B., F.I., J.S.D., A.P. E.V.R.; writing—original draft, D.K., G.R., O.B., F.I., J.S.D., A.P., E.V.R.; writing—review & editing, D.K., G.R., O.B., F.I., J.S.D., A.P., E.V.R., G.T.B., I.H., S.R.B.; funding acquisition, G.T.B., I.H., S.R.B.; resources G.T.B., I.H., S.R.B.; supervision, G.T.B., I.H., S.R.B.

Corresponding authors

Correspondence to Simon R. Bare, Ive Hermans or Gregg T. Beckham.

Ethics declarations

Competing interests

D.K., G.R., and G.T.B. have filed a provisional patent application related to this work, No.63/790,923. Other authors have no competing interests to declare.

Peer review

Peer review information

Nature Communications thanks Saikat Dutta, Bhari Mallanna Nagaraja, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, D., Rosetto, G., Ibrahim, F. et al. Solventless, ambient-pressure production of bio-based lactones over earth-abundant, mixed metal oxide catalysts for circular polyesters. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69362-8

Download citation

  • Received: 30 August 2025

  • Accepted: 27 January 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69362-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing