Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Functional distinctions between orbitofrontal cortex and anterior cingulate cortex subregions in decision-making and autonomic regulation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Functional distinctions between orbitofrontal cortex and anterior cingulate cortex subregions in decision-making and autonomic regulation

  • Georgios K. Papageorgiou  ORCID: orcid.org/0000-0002-0121-32301,2,
  • Ken-ichi Amemori  ORCID: orcid.org/0000-0001-8500-68203,
  • Daniel J. Gibson  ORCID: orcid.org/0000-0003-4376-60411,2,
  • Helen N. Schwerdt4,
  • Michelangelo Naim1,2,
  • Michelle C. Wang  ORCID: orcid.org/0000-0002-3122-20901,2,5,6,
  • Tomoko Yoshida1,2,
  • Jitendra Sharma1,2,7,8,
  • Urvashi Upadhyay9,
  • Guangyu Robert Yang  ORCID: orcid.org/0000-0002-8919-42481,2 &
  • …
  • Ann M. Graybiel  ORCID: orcid.org/0000-0002-4326-77201,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Neural circuits
  • Prefrontal cortex
  • Reward

Abstract

Mood disorders are associated with complex disruptions in brain networks, including those associated with the orbitofrontal cortex (OFC) and pregenual anterior cingulate cortex (pACC). Differential functions of these regions, especially the functions of the far-caudal OFC, are incompletely understood. We trained macaques to perform an approach-avoidance task and recorded cOFC and pACC neuronal activity and autonomic/somatic responses during performance, including during electrical microstimulation (EMS) of the cOFC. The cOFC was sensitive to both positive and negative stimuli, whereas the pACC was significantly more active during aversive outcomes. cOFC EMS increased avoidance, suggesting a causal cOFC function in cost-benefit decision-making. The cOFC activity led pACC activity during the decision period, supporting cOFC network prominence. Autonomic and somatic responses were positively correlated with behavioral patterns, consistent with a coordinated body-brain involvement during emotionally significant decision-making. We suggest that dysfunction of this network could potentially contribute to the etiology of mood disorders.

Similar content being viewed by others

A structural and functional subdivision in central orbitofrontal cortex

Article Open access 24 June 2022

Distinct roles of monkey OFC-subcortical pathways in adaptive behavior

Article Open access 28 August 2024

Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine

Article Open access 26 July 2021

Data availability

The Source Data underlying all main figures and Supplementary Figs. have been deposited in Figshare under the accession code doi: 10.6084/m9.figshare.30652049. Sample datasets used to illustrate the analysis workflow are provided in the associated GitHub repository. Other data that cannot be formatted in Excel (including large raw continuous electrophysiological and physiological recordings and related files in specialized formats that are not practical to deposit as Excel-compatible tables) are available under restricted access and may be requested by contacting the corresponding authors at: graybiel@mit.edu and georgios.k.papageorgiou@gmail.com.

Code availability

All MATLAB code used for data analyses and figure generation is available at: https://github.com/geokpap/natcomm_gp. The repository includes all scripts and a README file with instructions for reproducing the workflow using the accompanying sample datasets.

References

  1. Mayberg, H. S. Limbic-cortical dysregulation: a proposed model of depression. https://doi.org/10.1176/jnp.9.3.471 (1997).

  2. Drevets, W. C., Price, J. L. & Furey, M. L. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. https://doi.org/10.1007/s00429-008-0189-x (2008).

  3. Price, J. L. & Drevets, W. C. Neurocircuitry of mood disorders. https://doi.org/10.1038/npp.2009.104 (2010).

  4. Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. https://doi.org/10.1038/nn1944 (2007).

  5. Xu, X. et al. Intrinsic connectivity of the prefrontal cortex and striato-limbic system respectively differentiate major depressive from generalized anxiety disorder. https://doi.org/10.1038/S41386-020-00868-5 (2021).

  6. Chrysikou, E. G., Wing, E. K. & van Dam, W. O. Transcranial Direct Current Stimulation Over the Prefrontal Cortex in Depression Modulates Cortical Excitability in Emotion Regulation Regions as Measured by Concurrent Functional Magnetic Resonance Imaging: An Exploratory Study. https://doi.org/10.1016/j.bpsc.2019.12.004 (2022).

  7. Volkow, N. D., Wang, G. J., Fowler, J. S. & Tomasi, D. Addiction circuitry in the human brain. https://doi.org/10.1146/annurev-pharmtox-010611-134625 (2012).

  8. Etkin, A., Egner, T. & Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. https://doi.org/10.1016/j.tics.2010.11.004 (2011).

  9. Drevets, W. C. et al. Subgenual prefrontal cortex abnormalities in mood disorders. https://doi.org/10.1038/386824a0 (1997).

  10. Mayberg, H. S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. https://doi.org/10.1176/ajp.156.5.675 (1999).

  11. Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal and cingulate cortex. https://doi.org/10.1038/nn2066 (2008).

  12. Rushworth, M. F., Noonan, M. P., Boorman, E. D., Walton, M. E. & Behrens, T. E. Frontal cortex and reward-guided learning and decision-making. https://doi.org/10.1016/j.neuron.2011.05.014 (2011).

  13. Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J. & Rushworth, M. F. Optimal decision making and the anterior cingulate cortex. https://doi.org/10.1038/nn1724 (2006).

  14. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. https://doi.org/10.1016/j.neuron.2013.07.007 (2013).

  15. Amemori, K., Amemori, S. & Graybiel, A. M. Motivation and affective judgments differentially recruit neurons in the primate dorsolateral prefrontal and anterior cingulate cortex. https://doi.org/10.1523/JNEUROSCI.1731-14.2015 (2015).

  16. Amemori, K. & Graybiel, A. M. Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making. Nat. Neurosci. 15, 776–785 (2012).

    Google Scholar 

  17. Amemori, S., Graybiel, A. M. & Amemori, K. I. Causal Evidence for Induction of Pessimistic Decision-Making in Primates by the Network of Frontal Cortex and Striosomes. https://doi.org/10.3389/fnins.2021.649167 (2021).

  18. Ironside, M. et al. Approach-Avoidance Conflict in Major Depressive Disorder: Congruent Neural Findings in Humans and Nonhuman Primates. https://doi.org/10.1016/j.biopsych.2019.08.022 (2020).

  19. Pizzagalli, D. A. & Roberts, A. C. Prefrontal cortex and depression. https://doi.org/10.1038/s41386-021-01101-7 (2022).

  20. Kringelbach, M. L. & Rolls, E. T. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. https://doi.org/10.1016/j.pneurobio.2004.03.006 (2004).

  21. Schoenbaum, G., Setlow, B., Saddoris, M. P. & Gallagher, M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. https://doi.org/10.1016/s0896-6273(03 (2003).

  22. Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. https://doi.org/10.1038/nature04676 (2006).

  23. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. https://doi.org/10.1038/82959. (2001).

  24. Chau, B. K. et al. Contrasting roles for orbitofrontal cortex and amygdala in credit assignment and learning in macaques. https://doi.org/10.1016/j.neuron.2015.08.018 (2015).

  25. Papageorgiou, G. K. et al. Inverted activity patterns in ventromedial prefrontal cortex during value-guided decision-making in a less-is-more task. https://doi.org/10.1038/s41467-017-01833-5 (2017).

  26. Kahnt, T., Heinzle, J., Park, S. Q. & Haynes, J. D. The neural code of reward anticipation in human orbitofrontal cortex. https://doi.org/10.1073/pnas.0912838107 (2010).

  27. Ballesta, S., Shi, W., Conen, K. E. & Padoa-Schioppa, C. Values encoded in orbitofrontal cortex are causally related to economic choices. https://doi.org/10.1038/S41586-020-2880-x (2020).

  28. Rudebeck, P. H. & Murray, E. A. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. https://doi.org/10.1016/j.neuron.2014.10.049 (2014).

  29. Murray, E. A., Moylan, E. J., Saleem, K. S., Basile, B. M. & Turchi, J. Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. https://doi.org/10.7554/eLife.11695 (2015).

  30. Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. https://doi.org/10.1002/cne.902860306 (1989).

  31. Carmichael, S. T. & Price, J. L. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J. Comp. Neurol. 346, 366–402 (1994).

    Google Scholar 

  32. Schmahmann, J. D. & Pandya, D. N. Fiber Pathways of the Brain. https://doi.org/10.1093/acprof:oso/9780195104233.001.0001 (2006).

  33. Barbas, H. & Rempel-Clower, N. Cortical structure predicts the pattern of corticocortical connections. https://doi.org/10.1093/cercor/7.7.635 (1997).

  34. Ghashghaei, H. T., Hilgetag, C. C. & Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. https://doi.org/10.1016/j.neuroimage.2006.09.046 (2007).

  35. Eblen, F. & Graybiel, A. M. Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. https://doi.org/10.1523/JNEUROSCI.15-09-05999.1995 (1995).

  36. Amemori, S. et al. Microstimulation of primate neocortex targeting striosomes induces negative decision-making. Eur. J. Neurosci. 51, 731–741 (2020).

    Google Scholar 

  37. Murray, E. A. & Fellows, L. K. Prefrontal cortex interactions with the amygdala in primates. https://doi.org/10.1038/S41386-021-01128-w (2022).

  38. Amemori, S., Graybiel, A. M. & Amemori, K. I. Cingulate microstimulation induces negative decision-making via reduced top-down influence on primate fronto-cingulo-striatal network. https://doi.org/10.1038/S41467-024-48375-1 (2024).

  39. Amemori, K. & Graybiel, A. M. Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making. https://doi.org/10.1038/nn.3088 (2012).

  40. Amemori, K. I., Amemori, S., Gibson, D. J. & Graybiel, A. M. Striatal Microstimulation Induces Persistent and Repetitive Negative Decision-Making Predicted by Striatal Beta-Band Oscillation. https://doi.org/10.1016/j.neuron.2018.07.022 (2018).

  41. Millan, M. J. The neurobiology and control of anxious states. https://doi.org/10.1016/S0301-0082(03)00087-X (2003).

  42. Aupperle, R. L., Melrose, A. J., Francisco, A., Paulus, M. P. & Stein, M. B. Neural substrates of approach-avoidance conflict decision-making. https://doi.org/10.1002/hbm.22639 (2015).

  43. Friedman, A. et al. A Corticostriatal Path Targeting Striosomes Controls Decision-Making under Conflict. https://doi.org/10.1016/j.cell.2015.04.049 (2015).

  44. Friedman, A. et al. Chronic Stress Alters Striosome-Circuit Dynamics, Leading to Aberrant Decision-Making. https://doi.org/10.1016/j.cell.2017.10.017 (2017).

  45. Friedman, A. et al. Striosomes Mediate Value-Based Learning Vulnerable in Age and a Huntington’s Disease Model. https://doi.org/10.1016/j.cell.2020.09.060 (2020).

  46. Papageorgiou, G. K., Baudonnat, M., Cucca, F. & Walton, M. E. Mesolimbic dopamine encodes prediction errors in a state-dependent manner. https://doi.org/10.1016/j.celrep.2016.03.031 (2016).

  47. McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior. In Frontiers in Econometrics (ed. Zarembka, P.) 105–142 (Academic Press, New York) (1974).

  48. Levy, I., Snell, J., Nelson, A. J., Rustichini, A. & Glimcher, P. W. Neural representation of subjective value under risk and ambiguity. https://doi.org/10.1152/jn.00853.2009 (2010).

  49. Von Neumann, J. & Morgenstern, O. Theory of Games and Economic Behavior 2nd rev. edn. (Princeton Univ. Press, Princeton, NJ) (1947).

  50. Padoa-Schioppa, C. Neurobiology of economic choice: a good-based model. https://doi.org/10.1146/annurev-neuro-061010-113648 (2011).

  51. Mnih, V. et al. Asynchronous methods for deep reinforcement learning. In Proc. 33rd International Conference on Machine Learning. Proc. Mach. Learn. Res. (eds Balcan, M. F. & Weinberger, K. Q.) Vol. 48, 1928–1937 (PMLR, 2016).

  52. Johnson, E. J. & Ratcliff, R. Computational and process models of decision making in psychology and behavioral economics. In Neuroeconomics: Decision Making and the Brain 2nd edn. (eds Glimcher, P. W. & Fehr, E.) 35–47 (Academic Press, 2014). https://doi.org/10.1016/B978-0-12-416008-8.00003-6

  53. Wallis, J. D. Orbitofrontal cortex and its contribution to decision-making. https://doi.org/10.1146/annurev.neuro.30.051606.094334 (2007).

  54. Rolls, E. T. The functions of the orbitofrontal cortex. https://doi.org/10.1016/S0278-2626(03 (2004).

  55. Shackman, A. J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. https://doi.org/10.1038/nrn2994 (2011).

  56. Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J., 3rd, & Wager, T. D. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. https://doi.org/10.1016/j.neubiorev.2011.11.009 (2012).

  57. Appelhans, B. M. & Luecken, L. J. Heart rate variability as an index of regulated emotional responding. https://doi.org/10.1037/1089-2680.10.3.229 (2006).

  58. Thayer, J. F. & Lane, R. D. A model of neurovisceral integration in emotion regulation and dysregulation. https://doi.org/10.1016/s0165-0327(00 (2000).

  59. Bradley, M. M., Miccoli, L., Escrig, M. A. & Lang, P. J. The pupil as a measure of emotional arousal and autonomic activation. https://doi.org/10.1111/j.1469-8986.2008.00654.x (2008).

  60. Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked arousal systems. https://doi.org/10.1038/nn.3130 (2012).

  61. Murphy, P. R., Vandekerckhove, J. & Nieuwenhuis, S. Pupil-linked arousal determines variability in perceptual decision making. https://doi.org/10.1371/journal.pcbi.1003854 (2014).

  62. Kalin, N. H., Shelton, S. E. & Davidson, R. J. Defensive behaviors in infant rhesus monkeys: Ontogeny and context-dependent selective expression. https://doi.org/10.1111/j.1467-8624.1991.tb01598.x (1991).

  63. Kalin, N. H., Shelton, S. E. & Davidson, R. J. Individual differences in freezing and cortisol in infant and mother rhesus monkeys. https://doi.org/10.1037/0735-7044.112.1.251 (1996).

  64. Sammito, S. & Thielmann, B. The circadian rhythm of heart rate variability. https://doi.org/10.1080/09291016.2016.1183887 (2020).

  65. Folkedal, O. et al. Food anticipatory behaviour as an indicator of stress response and recovery in Atlantic salmon post-smolt after exposure to acute temperature fluctuation. https://doi.org/10.1016/j.physbeh.2011.08.008 (2012).

  66. Gygax, L., Reefmann, N., Wolf, M. & Langbein, J. Prefrontal cortex activity, sympatho-vagal reaction and behaviour distinguish between situations of feed reward and frustration in dwarf goats. https://doi.org/10.1016/j.bbr.2012.10.052 (2013).

  67. Feingold, J. et al. A system for recording neural activity chronically and simultaneously from multiple cortical and subcortical regions in nonhuman primates. https://doi.org/10.1152/jn.00625.2011 (2012).

  68. Hwang, J., Mitz, A. R., & Murray, E. A. NIMH MonkeyLogic: Behavioral control and data acquisition in MATLAB. https://doi.org/10.1016/j.jneumeth.2019.05.002 (2019).

Download references

Acknowledgements

We thank H. F. Hall, and Y. Kubota (Massachusetts Institute of Technology) for technical support, research insight, and manuscript preparation. This research was supported by the National Institute of Mental Health (P50 MH119467, to A.M.G.), the National Institute of Neurological Disorders and Stroke (R01 NS025529, to A.M.G.), the Army Research Office (W911NF-16-1-0474, to A.M.G.), the Japan Society for the Promotion of Science (JP24H02163 and JP22H04998, to K.A.), the Japan Agency for Medical Research and Development (JP24wm0625210h and JP24gm6910012h, to K.A.), the K. Lisa Yang Integrative Computational Neuroscience Center (to R.G.Y.) and the Mercatus Center at George Mason University (Emergent Ventures fellowship, to M.C.W.).

Author information

Authors and Affiliations

  1. McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA

    Georgios K. Papageorgiou, Daniel J. Gibson, Michelangelo Naim, Michelle C. Wang, Tomoko Yoshida, Jitendra Sharma, Guangyu Robert Yang & Ann M. Graybiel

  2. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

    Georgios K. Papageorgiou, Daniel J. Gibson, Michelangelo Naim, Michelle C. Wang, Tomoko Yoshida, Jitendra Sharma, Guangyu Robert Yang & Ann M. Graybiel

  3. Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan

    Ken-ichi Amemori

  4. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA

    Helen N. Schwerdt

  5. Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada

    Michelle C. Wang

  6. Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada

    Michelle C. Wang

  7. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and HMS, Boston, MA, USA

    Jitendra Sharma

  8. CNPRC, University of California, Davis, CA, USA

    Jitendra Sharma

  9. Boston University School of Medicine, Boston, MA, USA

    Urvashi Upadhyay

Authors
  1. Georgios K. Papageorgiou
    View author publications

    Search author on:PubMed Google Scholar

  2. Ken-ichi Amemori
    View author publications

    Search author on:PubMed Google Scholar

  3. Daniel J. Gibson
    View author publications

    Search author on:PubMed Google Scholar

  4. Helen N. Schwerdt
    View author publications

    Search author on:PubMed Google Scholar

  5. Michelangelo Naim
    View author publications

    Search author on:PubMed Google Scholar

  6. Michelle C. Wang
    View author publications

    Search author on:PubMed Google Scholar

  7. Tomoko Yoshida
    View author publications

    Search author on:PubMed Google Scholar

  8. Jitendra Sharma
    View author publications

    Search author on:PubMed Google Scholar

  9. Urvashi Upadhyay
    View author publications

    Search author on:PubMed Google Scholar

  10. Guangyu Robert Yang
    View author publications

    Search author on:PubMed Google Scholar

  11. Ann M. Graybiel
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, G.K.P., K.A., and A.M.G.; Methodology, G.K.P., K.A., and A.M.G.; Experimental Software, G.K.P.; Formal Analysis, G.K.P., D.J.G., K.A., M.N., and G.R.Y.; Writing—Original Draft, G.K.P.; Review, D.J.G., A.M.G., K.A., and H.N.S.; Experimental work, G.K.P., K.A., H.N.S., M.C.W., J.S., U.U., T.Y., and A.M.G.

Corresponding authors

Correspondence to Georgios K. Papageorgiou or Ann M. Graybiel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks James Howard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papageorgiou, G.K., Amemori, Ki., Gibson, D.J. et al. Functional distinctions between orbitofrontal cortex and anterior cingulate cortex subregions in decision-making and autonomic regulation. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69447-4

Download citation

  • Received: 06 January 2025

  • Accepted: 30 January 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69447-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing