Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Inversion of magnon lifetime of ferromagnetic and exchange resonance modes in ferrimagnets
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Inversion of magnon lifetime of ferromagnetic and exchange resonance modes in ferrimagnets

  • Chang Xu  ORCID: orcid.org/0000-0002-0924-324X1 na1,
  • Seok-Jong Kim  ORCID: orcid.org/0000-0001-5108-36252 na1,
  • Shishun Zhao1,
  • Chenhui Zhang  ORCID: orcid.org/0000-0002-0124-63151,
  • Dongsheng Yang1,
  • Jiayu Lei1,
  • Hanbum Park  ORCID: orcid.org/0000-0002-0020-93281,
  • Kyung-Jin Lee  ORCID: orcid.org/0000-0001-6269-22662 &
  • …
  • Hyunsoo Yang  ORCID: orcid.org/0000-0003-0907-28981 

Nature Communications , Article number:  (2026) Cite this article

  • 1071 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Magnetic properties and materials
  • Spintronics

Abstract

Antiferromagnetically coupled ferrimagnets exhibit both ferromagnetic resonance and exchange resonance modes. The antiferromagnetic exchange resonance mode, characterized by a higher magnon frequency than the ferromagnetic resonance mode, holds promise for fast spintronic applications. However, as higher magnon frequencies are typically associated with shorter magnon lifetimes, the exchange resonance mode is expected to decay more rapidly than the ferromagnetic resonance mode, leading to challenges for long-lived information transfer and coherent dynamics. Here we demonstrate that this inverse relationship between frequency and lifetime can be broken in ferrimagnets with two inequivalent magnetic sublattices. Using time-resolved magneto-optical Kerr effect spectroscopy on CoGd, we observe that the exchange resonance mode exhibits a longer magnon lifetime than the ferromagnetic resonance mode near the angular momentum compensation point. Our theoretical and simulation models reveal that this inversion of magnon lifetime arises from the inequivalence in magnetic damping of the two sublattices. The unique combination of higher frequency and longer lifetime in the exchange resonance mode of ferrimagnets highlights its potential for high-speed and energy-efficient spintronic devices.

Similar content being viewed by others

Magnon-phonon Fermi resonance in antiferromagnetic CoF2

Article Open access 28 June 2024

Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators

Article Open access 12 March 2024

Magnetization switching driven by magnonic spin dissipation

Article Open access 01 July 2025

Data availability

The data that support the findings of this study are available within the article and the Supplementary Information.

References

  1. Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).

    Google Scholar 

  2. Kim, K. J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

    Google Scholar 

  3. Okuno, T. et al. Spin-transfer torques for domain wall motion in antiferromagnetically coupled ferrimagnets. Nat. Electron. 2, 389–393 (2019).

    Google Scholar 

  4. Divinskiy, B., Chen, G., Urazhdin, S., Demokritov, S. O. & Demidov, V. E. Effects of spin-orbit torque on the ferromagnetic and exchange spin-wave modes in ferrimagnetic Co-Gd alloy. Phys. Rev. Appl. 14, 044016 (2020).

    Google Scholar 

  5. Mishra, R. et al. Anomalous current-induced spin torques in ferrimagnets near compensation. Phys. Rev. Lett. 118, 167201 (2017).

    Google Scholar 

  6. Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).

    Google Scholar 

  7. Quessab, Y., Xu, J. W., Morshed, M. G., Ghosh, A. W. & Kent, A. D. Interplay between spin-orbit torques and Dzyaloshinskii-Moriya interactions in ferrimagnetic amorphous alloys. Adv. Sci. 8, e2100481 (2021).

    Google Scholar 

  8. Mekonnen, A. et al. Femtosecond laser excitation of spin resonances in amorphous ferrimagnetic Gd1-xCox alloys. Phys. Rev. Lett. 107, 117202 (2011).

    Google Scholar 

  9. Schlickeiser, F. et al. Temperature dependence of the frequencies and effective damping parameters of ferrimagnetic resonance. Phys. Rev. B 86, 214416 (2012).

    Google Scholar 

  10. Deb, M., Molho, P. & Barbara, B. Magnetic damping of ferromagnetic and exchange resonance modes in a ferrimagnetic insulator. Phys. Rev. B 105, 014432 (2022).

    Google Scholar 

  11. Kim, S. K. et al. Ferrimagnetic spintronics. Nat. Mater. 21, 24–34 (2022).

    Google Scholar 

  12. Davydova, M. D., Zvezdin, K. A., Becker, J., Kimel, A. V. & Zvezdin, A. K. H−T phase diagram of rare-earth–transition-metal alloys in the vicinity of the compensation point. Phys. Rev. B 100, 064409 (2019).

    Google Scholar 

  13. Kim, C. et al. Distinct handedness of spin wave across the compensation temperatures of ferrimagnets. Nat. Mater. 19, 980–985 (2020).

    Google Scholar 

  14. Krichevsky, D. M. et al. Unconventional spin dynamics in the noncollinear phase of a ferrimagnet. Phys. Rev. B 108, 174442 (2023).

    Google Scholar 

  15. Ignatyeva, D. O., Gusev, N. A., Zvezdin, A. K. & Belotelov, V. I. Spin-reorientation and phase diagram for a ferrimagnet with compensation point in inclined magnetic field. J. Magn. Magn. Mater. 623, 172968 (2025).

    Google Scholar 

  16. Ignatyeva, D. O. et al. High-amplitude ferromagnetic soft mode at the spin-reorientation transition in an iron garnet film excited by ultrashort laser pulses. Phys. Rev. B 111, 224424 (2025).

    Google Scholar 

  17. Stanciu, C. D. et al. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation. Phys. Rev. B 73, 220402 (2006).

    Google Scholar 

  18. Binder, M. et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Phys. Rev. B 74, 134404 (2006).

    Google Scholar 

  19. Mikeska, H. J. & Steiner, M. Solitary excitations in one-dimensional magnets. Adv. Phys. 40, 191–356 (1991).

    Google Scholar 

  20. Gomonaĭ, E. V. & Loktev, V. M. Distinctive effects of a spin-polarized current on the static and dynamic properties of an antiferromagnetic conductor. Low Temp. Phys. 34, 198–206 (2008).

    Google Scholar 

  21. Hals, K. M., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011).

    Google Scholar 

  22. Swaving, A. C. & Duine, R. A. Current-induced torques in continuous antiferromagnetic textures. Phys. Rev. B 83, 054428 (2011).

    Google Scholar 

  23. Kim, S. K., Tserkovnyak, Y. & Tchernyshyov, O. Propulsion of a domain wall in an antiferromagnet by magnons. Phys. Rev. B 90, 104406 (2014).

    Google Scholar 

  24. Tveten, E. G., Müller, T., Linder, J. & Brataas, A. Intrinsic magnetization of antiferromagnetic textures. Phys. Rev. B 93, 104408 (2016).

    Google Scholar 

  25. Kim, S. K., Lee, K.-J. & Tserkovnyak, Y. Self-focusing skyrmion racetracks in ferrimagnets. Phys. Rev. B 95, 140404 (2017).

    Google Scholar 

  26. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Google Scholar 

  27. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Google Scholar 

  28. Kim, D. H. et al. Bulk Dzyaloshinskii-Moriya interaction in amorphous ferrimagnetic alloys. Nat. Mater. 18, 685–690 (2019).

    Google Scholar 

  29. Boventer, I. et al. Room-temperature antiferromagnetic resonance and inverse spin-Hall voltage in canted antiferromagnets. Phys. Rev. Lett. 126, 187201 (2021).

    Google Scholar 

  30. Wang, H. et al. Spin pumping of an easy-plane antiferromagnet enhanced by Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 127, 117202 (2021).

    Google Scholar 

  31. Ellis, M. O. A., Ostler, T. A. & Chantrell, R. W. Classical spin model of the relaxation dynamics of rare-earth doped permalloy. Phys. Rev. B 86, 174418 (2012).

    Google Scholar 

  32. Kamra, A. & Belzig, W. Spin pumping and shot noise in ferrimagnets: Bridging ferro- and antiferromagnets. Phys. Rev. Lett. 119, 197201 (2017).

    Google Scholar 

  33. Liu, Q., Yuan, H. Y., Xia, K. & Yuan, Z. Mode-dependent damping in metallic antiferromagnets due to intersublattice spin pumping. Phys. Rev. Mater. 1, 061401 (2017).

    Google Scholar 

  34. Kamra, A., Troncoso, R. E., Belzig, W. & Brataas, A. Gilbert damping phenomenology for two-sublattice magnets. Phys. Rev. B 98, 184402 (2018).

    Google Scholar 

  35. Troncoso, R. E., Lund, M. A., Brataas, A. & Kamra, A. Cross-sublattice spin pumping and magnon level attraction in van der Waals antiferromagnets. Phys. Rev. B 103, 144422 (2021).

    Google Scholar 

  36. Tang, J. & Cheng, R. Absence of cross-sublattice spin pumping and spin-transfer torques in collinear antiferromagnets. APL Mater. 11, 111117 (2023).

    Google Scholar 

  37. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).

    Google Scholar 

  38. Mentink, J. H. et al. Ultrafast spin dynamics in multisublattice magnets. Phys. Rev. Lett. 108, 057202 (2012).

    Google Scholar 

  39. Baral, A. & Schneider, H. C. Magnetic switching dynamics due to ultrafast exchange scattering: A model study. Phys. Rev. B 91, 100402 (2015).

    Google Scholar 

  40. Yang, D. et al. Spin-orbit torque manipulation of sub-terahertz magnons in antiferromagnetic α-Fe2O3. Nat. Commun. 15, 4046 (2024).

    Google Scholar 

  41. Lei, J. et al. Observation of quantized spin wave modes in nano-constriction spin Hall nano-oscillators. Appl. Phys. Lett. 126, 222406 (2025).

    Google Scholar 

  42. Karahan, E. A. et al. Deep-learning enabled generalized inverse design of multi-port radio-frequency and sub-terahertz passives and integrated circuits. Nat. Commun. 15, 10734 (2024).

    Google Scholar 

  43. Jensen, J. & Mackintosh, A. R. Rare earth magnetism: structures and excitations. (Oxford University Press, 1991).

Download references

Acknowledgements

The work was partially supported by the National Research Foundation (NRF) Singapore Investigatorship (NRFI06-2020-0015) (H.Y.), Ministry of Education-Singapore Tier 2 (T2EP50124-0017) (H.Y.), the National Foundation of Korea (RS-2022-NR068225, RS-2024-00436660, RS-2025-00516229) (K.-J.L.), and Samsung Electronics Co., Ltd (IO221024-03172-01, IO241218−11518-01) (K.-J.L. and H.Y.).

Author information

Author notes
  1. These authors contributed equally: Chang Xu, Seok-Jong Kim.

Authors and Affiliations

  1. Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore

    Chang Xu, Shishun Zhao, Chenhui Zhang, Dongsheng Yang, Jiayu Lei, Hanbum Park & Hyunsoo Yang

  2. Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

    Seok-Jong Kim & Kyung-Jin Lee

Authors
  1. Chang Xu
    View author publications

    Search author on:PubMed Google Scholar

  2. Seok-Jong Kim
    View author publications

    Search author on:PubMed Google Scholar

  3. Shishun Zhao
    View author publications

    Search author on:PubMed Google Scholar

  4. Chenhui Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Dongsheng Yang
    View author publications

    Search author on:PubMed Google Scholar

  6. Jiayu Lei
    View author publications

    Search author on:PubMed Google Scholar

  7. Hanbum Park
    View author publications

    Search author on:PubMed Google Scholar

  8. Kyung-Jin Lee
    View author publications

    Search author on:PubMed Google Scholar

  9. Hyunsoo Yang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.X., D.Y., and H.P. constructed the TR-MOKE setup. C.X. carried out the TR-MOKE experiments. S.Z., C.Z., and J.L. fabricated and characterized samples. S.-J.K. and K.-J.L. developed the theory and conducted the simulations. C.X., S.-J.K., K.-J.L., and H.Y. wrote the paper with the help of all authors. H.Y. and K.-J.L. supervised the study.

Corresponding authors

Correspondence to Kyung-Jin Lee or Hyunsoo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Denis Krichevsky and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Kim, SJ., Zhao, S. et al. Inversion of magnon lifetime of ferromagnetic and exchange resonance modes in ferrimagnets. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69453-6

Download citation

  • Received: 03 April 2025

  • Accepted: 02 February 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69453-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing