Abstract
Hf0.5Zr0.5O2 emerges as a promising candidate for next-generation ferroelectric memories and transistors. However, the intrinsic nature of its ferroelectricity remains a subject of debate, primarily stemming from challenges in the precise characterization of nanoscale polycrystallinity and multiphase coexistence. Here, we investigate substrate-free Hf0.5Zr0.5O2 films using multislice electron ptychography, achieving a resolution of 25 picometers with capabilities for oxygen imaging, depth resolution, and vacancy quantification. Precise measurements reveal that the polarization displacement in ferroelectric phase is ∼56 ± 6 picometers (corresponding to a polarization ∼34 ± 4 μC/cm2). We further identify significant polarization suppression near grain boundaries, while there is negligible change in the 180° neutral domain walls. Furthermore, we demonstrate the existence of the 180° head-to-head charged domain wall in Hf0.5Zr0.5O2, which is confined within a single unit cell layer. At such a charged domain wall, the atomic displacement is reduced to ∼4 picometers, with oxygen vacancies accumulating up to 20%. Notably, the polar layers neighboring the 180º head-to-head charged domain wall remain unchanged. The precise determination of these structural features with ultra-high spatial resolution offers critical information for optimizing and designing new hafnium-based ferroelectric devices.
Data availability
The 4D-STEM data presented in this study are available in Zenodo https://doi.org/10.5281/zenodo.18373896.
Code availability
The code for MEP is available Zenodo https://doi.org/10.5281/zenodo.18373896.
References
Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478–482 (2020).
Kang, S. et al. Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment. Science 376, 731–738 (2022).
Luo, Q. et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 11, 1391 (2020).
Müller, J. et al. Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).
Yan, F. J. et al. Recent progress on defect-engineering in ferroelectric HfO2: The next step forward multiscale structural optimization. Mater. Horiz. 11, 626–645 (2024).
Yang, W. et al. Ferroelectricity of hafnium oxide-based materials: Current status and future prospects from physical mechanisms to device applications. J. Semiconductors 44, 053101 (2023).
Schroeder, U., Park, M. H., Mikolajick, T. & Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 7, 670–670 (2022).
Ihlefeld, J. F., Jaszewski, S. T. & Fields, S. S. A Perspective on ferroelectricity in hafnium oxide: Mechanisms and considerations regarding its stability and performance. Appl. Phys. Lett. 121, 40502 (2023).
Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).
Kim, K. H., Karpov, I., Olsson, R. H. 3rd & Jariwala, D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023).
Hoffmann, M. et al. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).
Cheng, Y. et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film. Nat. Commun. 13, 645 (2022).
Li X. et al. Ferroelastically protected reversible orthorhombic to monoclinic-like phase transition in ZrO2 nanocrystals. Nature Materials (2024).
Kumar, P., Gupta, D. & Lee, J. H. Negative Gradient Energy Facilitates Charged Domain Walls in HfO2. Phys. Rev. Lett. 134, 166101 (2025).
Yang, J. et al. Theoretical Lower Limit of Coercive Field in Ferroelectric Hafnia. Phys. Rev. X 15, 021042 (2025).
Xu Z., Zhu X., Zhao G.-D., Zhang D. W., Yu S. Oxygen vacancies stabilized 180° charged domain walls in ferroelectric hafnium oxide. Applied Physics Letters 124 (2024).
Paul, T. K., Saha, A. K. & Gupta, S. K. Formation and energetics of head-to-head and tail-to-tail domain walls in hafnium zirconium oxide. Sci. Rep.-Uk 14, 9861 (2024).
He, R., Wu, H. Y., Liu, S., Liu, H. F. & Zhong, Z. C. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies. Phys. Rev. B 104, L180102 (2021).
Wu, Y. et al. Unconventional Polarization-Switching Mechanism in (Hf, Zr)O2 Ferroelectrics and Its Implications. Phys. Rev. Lett. 131, 226802 (2023).
Lee, H. J. et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 369, 1343–1347 (2020).
Li, X. et al. Polarization Switching and Correlated Phase Transitions in Fluorite-Structure ZrO2 Nanocrystals. Adv. Mater. 35, e2207736 (2023).
Nukala, P. et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 372, 630–635 (2021).
Sang, X. H., Grimley, E. D., Schenk, T., Schroeder, U. & LeBeau, J. M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 106, 126905 (2015).
Grimley, E. D., Schenk, T., Mikolajick, T., Schroeder, U. & LeBeau, J. M. Atomic Structure of Domain and Interphase Boundaries in Ferroelectric HfO2. Adv. Mater. Interfaces 5, 1701258 (2018).
Boescke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).
Yu, C. et al. Insights into the origin of robust ferroelectricity in HfO2-based thin films from the order-disorder transition driven by vacancies. Phys. Rev. Appl. 22, 024028 (2024).
Wang, Y. et al. A stable rhombohedral phase in ferroelectric Hf(Zr)1+xO2 capacitor with ultralow coercive field. Science 381, 558–563 (2023).
Nukala, P., Wei, Y. F., de Haas, V., Guo, Q. K., Antoja-Lleonart, J. & Noheda, B. Guidelines for the stabilization of a polar rhombohedral phase in epitaxial Hf0.5Zr0.5O2 thin films. Ferroelectrics 569, 148–163 (2020).
Wei, Y. et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 17, 1095–1100 (2018).
Zhong, H. et al. Large-Scale Hf0.5 Zr0.5O2 Membranes with Robust Ferroelectricity. Adv. Mater. 34, e2109889 (2022).
Zheng Y. Z. et al. Atomic-scale characterization of defects generation during fatigue in ferroelectric Hf0.5Zr0.5O2 films: vacancy generation and lattice dislocation. Int El Devices Meet, 33.35.31-33.35.34 (2021).
Chen, L., Liang, Z., Shao, S., Huang, Q., Tang, K. & Huang, R. First direct observation of the built-in electric field and oxygen vacancy migration in ferroelectric Hf0.5Zr0.5O2 film during electrical cycling. Nanoscale 15, 7014–7022 (2023).
Gao, P. et al. Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nat. Commun. 5, 3801 (2014).
Gao, P. et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat. Commun. 8, 15549 (2017).
Findlay, S. D., Azuma, S., Shibata, N., Okunishi, E. & Ikuhara, Y. Direct oxygen imaging within a ceramic interface, with some observations upon the dark contrast at the grain boundary. Ultramicroscopy 111, 285–289 (2011).
Lazić, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).
Jia, C. L., Lentzen, M. & Urban, K. Atomic-Resolution Imaging of Oxygen in Perovskite Ceramics. Science 299, 870–873 (2003).
Gao, P., Kumamoto, A., Ishikawa, R., Lugg, N., Shibata, N. & Ikuhara, Y. Picometer-scale atom position analysis in annular bright-field STEM imaging. Ultramicroscopy 184, 177–187 (2018).
LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110, 118–125 (2010).
Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).
Ophus, C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanalysis 25, 563–582 (2019).
Deb P. et al. Imaging Polarity in Two Dimensional Materials by Breaking Friedel’s Law. Ultramicroscopy 215 (2020).
Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-angstrom resolution. Nature 559, 343–349 (2018).
Odstrcil, M., Menzel, A. & Guizar-Sicairos, M. Iterative least-squares solver for generalized maximum-likelihood ptychography. Opt. Express 26, 3108–3123 (2018).
Schloz, M., Pekin, T. C., Chen, Z., Van den Broek, W., Muller, D. A. & Koch, C. T. Overcoming information reduced data and experimentally uncertain parameters in ptychography with regularized optimization. Opt. Express 28, 28306–28323 (2020).
Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).
Sha, H., Cui, J. & Yu, R. Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction. Sci. Adv. 8, eabn2275 (2022).
Sha, H. et al. Sub-nanometer-scale mapping of crystal orientation and depth-dependent structure of dislocation cores in SrTiO3. Nat. Commun. 14, 162 (2023).
Yang, H. et al. Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures. Nat. Commun. 7, 12532 (2016).
Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 29, 1606–1614 (2012).
Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).
Li, P., Edo, T., Batey, D., Rodenburg, J. & Maiden, A. Breaking ambiguities in mixed state ptychography. Opt. Express 24, 9038–9052 (2016).
Chen Z. et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nature Communications 11 (2020).
Chen, Z., Shao, Y.-T., Jiang, Y. & Muller, D. Three-dimensional imaging of single dopants inside crystals using multislice electron ptychography. Microsc. Microanalysis 27, 2146–2148 (2021).
Sha, H. et al. Ptychographic measurements of varying size and shape along zeolite channels. Sci. Adv. 9, eadf1151 (2023).
Dong Z. et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ. Nature, 1-6 (2024).
Zhang, Y., Chen, H. X., Duan, L., Fan, J. B., Ni, L. & Ji, V. A comparison study of the Born effective charges and dielectric properties of the cubic, tetragonal, monoclinic, ortho-I, ortho-II and ortho-III phases of zirconia. Solid State Sci. 81, 58–65 (2018).
Materlik, R. C. K., A. Kersch The Origin of Ferroelectricity in HfxZr1-xO2: A Computational Investigation and a Surface Energy Model. J. Appl. Phys. 117, 134109 (2015).
Lowther, J. E., Dewhurst, J. K., Leger, J. M. & Haines, J. Relative stability of ZrO2 and HfO2 structural phases. Phys. Rev. B 60, 14485–14488 (1999).
Kisi, E. H., Howard, C. J. & Hill, R. J. Crystal-Structure of Orthorhombic Zirconia in Partially Stabilized Zirconia. J. Am. Ceram. Soc. 72, 1757–1760 (1989).
Ohtaka, O., Yamanaka, T., Kume, S., Hara, N., Asano, H. & Izumi, F. Structural-Analysis of Orthorhombic ZrO2 by High-Resolution Neutron Powder Diffraction. P Jpn Acad. B-Phys. 66, 193–196 (1990).
Qi, Y. et al. Stabilization of Competing Ferroelectric Phases of HfO2 under Epitaxial Strain. Phys. Rev. Lett. 125, 257603 (2020).
Ramanathan, S., Muller, D. A., Wilk, G. D., Park, C. M. & McIntyre, P. C. Effect of oxygen stoichiometry on the electrical properties of zirconia gate dielectrics. Appl. Phys. Lett. 79, 3311–3313 (2001).
Stemmer, S., Chen, Z. Q., Zhu, W. J. & Ma, T. P. Electron energy-loss spectroscopy study of thin film hafnium aluminates for novel gate dielectrics. J. Microsc. 210, 74–79 (2003).
Calka, P. et al. Chemical and structural properties of conducting nanofilaments in TiN/HfO2-based resistive switching structures. Nanotechnology 24, 085706 (2013).
Zhou, Y. et al. The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle. Computational Mater. Sci. 167, 143–150 (2019).
Lee, J. et al. Role of oxygen vacancies in ferroelectric or resistive switching hafnium oxide. Nano Convergence 10, 55 (2023).
Chisholm, M. F., Luo, W., Oxley, M. P., Pantelides, S. T. & Lee, H. N. Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 105, 197602 (2010).
Kim, S. J., Mohan, J., Summerfelt, S. R. & Kim, J. Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances. Jom 71, 246–255 (2018).
Cheema, S. S. et al. Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).
Li, M. et al. Direct observation of weakened interface clamping effect enabled ferroelastic domain switching. Acta Mater. 171, 184–189 (2019).
Jia, C.-L., Mi, S.-B., Urban, K., Vrejoiu, I., Alexe, M. & Hesse, D. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008).
Bednyakov, P. S., Sturman, B. I., Sluka, T., Tagantsev, A. K. & Yudin, P. V. Physics and applications of charged domain walls. Npj Comput Mater. 4, 65 (2018).
Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).
Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures. Science 303, 488–491 (2004).
Zhou P. A. et al. Intrinsic 90° charged domain wall and its effects on ferroelectric properties. Acta Mater 232 (2022).
Zheng Y. Z. et al. Direct atomic-scale visualization of the 90° domain walls and their migrations in Hf0.5Zr0.5O2 ferroelectric thin films. Mater Today Nano 24 (2023).
Yang, W., Sha, H., Cui, J., Mao, L. & Yu, R. Local-orbital ptychography for ultrahigh-resolution imaging. Nat. Nanotechnol. 19, 612–617 (2024).
Wakonig, K. et al. PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data. J. Appl Crystallogr 53, 574–586 (2020).
Silinga A., Allen C., Barthel J., Ophus C., MacLaren I. Measurement of Atomic Modulation Direction Using the Azimuthal Variation of First-Order Laue Zone Electron Diffraction. Microscopy and microanalysis: the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 29 (2023).
Ziatdinov, M., Ghosh, A., Wong, C. Y. & Kalinin, S. V. AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy. Nat. Mach. Intell. 4, 1101–1112 (2022).
Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).
Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).
Mukherjee, B., Fedorova, N. S. & Íñiguez-González, J. First-principles predictions of HfO2-based ferroelectric superlattices. Npj Comput Mater. 10, 153 (2024).
Tariq A. First-principle calculations of ferroelectric properties of HfO2 and ZrO2. (2022).
Madsen, J. & Susi, T. The abTEM code: transmission electron microscopy from first principles. Open Res. Eur. 1, 24 (2021).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (52125307 to P.G., 12222414 to C.G., 12504198 to J.D.) and the open research fund of Song-shan Lake Materials Laboratory (2022SLABFK03). P.G. acknowledges the support from the New Cornerstone Science Foundation through the XPLORER PRIZE. We acknowledge Electron Microscopy Laboratory of Peking University for the use of electron microscopes and High-performance Computing Platform of Peking University for providing computational resources. We acknowledge the assistance of Prof. Zhen Chen from Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; We thank the discussion of Yi Jiang from the Advanced Photon Source, Argonne National Laboratory, USA.
Author information
Authors and Affiliations
Contributions
P.G. conceived the project. X.Y.G. performed the ptychographic experiments, reconstruction and data analyses with the assistance of B.H., R.L.M., R.C.S., R.X.Z., J.B.L., T.W., and J.D.L.; X.W.Z. performed the STEM-EELS experiment and analysis. Z.H.L., K.J.J., and C.G. prepared the HZO sample. X.Y.G. wrote the manuscript under the direction of J.D.L. and P.G.; All the authors contributed to this work through useful discussion and/or comments to the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interest
Peer review
Peer review information
Nature Communications thanks Andreas Beyer, Woonbae Sohn, Maxime Le Ster and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Gao, X., Liu, Z., Han, B. et al. Precise structure and polarization determination of Hf0.5Zr0.5O2 with electron ptychography. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69514-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69514-w