Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Precise structure and polarization determination of Hf0.5Zr0.5O2 with electron ptychography
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Precise structure and polarization determination of Hf0.5Zr0.5O2 with electron ptychography

  • Xiaoyue Gao1,2 na1,
  • Zhuohui Liu3 na1,
  • Bo Han1,2,
  • Xiaowen Zhang1,2,
  • Ruilin Mao1,2,
  • Ruochen Shi1,2,
  • Ruixue Zhu1,2,
  • Jiangbo Lu  ORCID: orcid.org/0009-0001-1924-430X4,
  • Tao Wang  ORCID: orcid.org/0000-0002-4789-70412,
  • Kuijuan Jin  ORCID: orcid.org/0000-0002-0047-43753,
  • Jiade Li  ORCID: orcid.org/0009-0001-1567-33931,2,
  • Chen Ge  ORCID: orcid.org/0000-0002-8093-940X3 &
  • …
  • Peng Gao  ORCID: orcid.org/0000-0001-9868-21151,2,5,6,7 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Surfaces, interfaces and thin films

Abstract

Hf0.5Zr0.5O2 emerges as a promising candidate for next-generation ferroelectric memories and transistors. However, the intrinsic nature of its ferroelectricity remains a subject of debate, primarily stemming from challenges in the precise characterization of nanoscale polycrystallinity and multiphase coexistence. Here, we investigate substrate-free Hf0.5Zr0.5O2 films using multislice electron ptychography, achieving a resolution of 25 picometers with capabilities for oxygen imaging, depth resolution, and vacancy quantification. Precise measurements reveal that the polarization displacement in ferroelectric phase is ∼56 ± 6 picometers (corresponding to a polarization ∼34 ± 4 μC/cm2). We further identify significant polarization suppression near grain boundaries, while there is negligible change in the 180° neutral domain walls. Furthermore, we demonstrate the existence of the 180° head-to-head charged domain wall in Hf0.5Zr0.5O2, which is confined within a single unit cell layer. At such a charged domain wall, the atomic displacement is reduced to ∼4 picometers, with oxygen vacancies accumulating up to 20%. Notably, the polar layers neighboring the 180º head-to-head charged domain wall remain unchanged. The precise determination of these structural features with ultra-high spatial resolution offers critical information for optimizing and designing new hafnium-based ferroelectric devices.

Data availability

The 4D-STEM data presented in this study are available in Zenodo https://doi.org/10.5281/zenodo.18373896.

Code availability

The code for MEP is available Zenodo https://doi.org/10.5281/zenodo.18373896.

References

  1. Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478–482 (2020).

    Google Scholar 

  2. Kang, S. et al. Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment. Science 376, 731–738 (2022).

    Google Scholar 

  3. Luo, Q. et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 11, 1391 (2020).

    Google Scholar 

  4. Müller, J. et al. Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).

    Google Scholar 

  5. Yan, F. J. et al. Recent progress on defect-engineering in ferroelectric HfO2: The next step forward multiscale structural optimization. Mater. Horiz. 11, 626–645 (2024).

    Google Scholar 

  6. Yang, W. et al. Ferroelectricity of hafnium oxide-based materials: Current status and future prospects from physical mechanisms to device applications. J. Semiconductors 44, 053101 (2023).

    Google Scholar 

  7. Schroeder, U., Park, M. H., Mikolajick, T. & Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 7, 670–670 (2022).

    Google Scholar 

  8. Ihlefeld, J. F., Jaszewski, S. T. & Fields, S. S. A Perspective on ferroelectricity in hafnium oxide: Mechanisms and considerations regarding its stability and performance. Appl. Phys. Lett. 121, 40502 (2023).

    Google Scholar 

  9. Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).

    Google Scholar 

  10. Kim, K. H., Karpov, I., Olsson, R. H. 3rd & Jariwala, D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023).

    Google Scholar 

  11. Hoffmann, M. et al. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).

    Google Scholar 

  12. Cheng, Y. et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film. Nat. Commun. 13, 645 (2022).

    Google Scholar 

  13. Li X. et al. Ferroelastically protected reversible orthorhombic to monoclinic-like phase transition in ZrO2 nanocrystals. Nature Materials (2024).

  14. Kumar, P., Gupta, D. & Lee, J. H. Negative Gradient Energy Facilitates Charged Domain Walls in HfO2. Phys. Rev. Lett. 134, 166101 (2025).

    Google Scholar 

  15. Yang, J. et al. Theoretical Lower Limit of Coercive Field in Ferroelectric Hafnia. Phys. Rev. X 15, 021042 (2025).

    Google Scholar 

  16. Xu Z., Zhu X., Zhao G.-D., Zhang D. W., Yu S. Oxygen vacancies stabilized 180° charged domain walls in ferroelectric hafnium oxide. Applied Physics Letters 124 (2024).

  17. Paul, T. K., Saha, A. K. & Gupta, S. K. Formation and energetics of head-to-head and tail-to-tail domain walls in hafnium zirconium oxide. Sci. Rep.-Uk 14, 9861 (2024).

    Google Scholar 

  18. He, R., Wu, H. Y., Liu, S., Liu, H. F. & Zhong, Z. C. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies. Phys. Rev. B 104, L180102 (2021).

    Google Scholar 

  19. Wu, Y. et al. Unconventional Polarization-Switching Mechanism in (Hf, Zr)O2 Ferroelectrics and Its Implications. Phys. Rev. Lett. 131, 226802 (2023).

    Google Scholar 

  20. Lee, H. J. et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 369, 1343–1347 (2020).

    Google Scholar 

  21. Li, X. et al. Polarization Switching and Correlated Phase Transitions in Fluorite-Structure ZrO2 Nanocrystals. Adv. Mater. 35, e2207736 (2023).

    Google Scholar 

  22. Nukala, P. et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 372, 630–635 (2021).

    Google Scholar 

  23. Sang, X. H., Grimley, E. D., Schenk, T., Schroeder, U. & LeBeau, J. M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 106, 126905 (2015).

    Google Scholar 

  24. Grimley, E. D., Schenk, T., Mikolajick, T., Schroeder, U. & LeBeau, J. M. Atomic Structure of Domain and Interphase Boundaries in Ferroelectric HfO2. Adv. Mater. Interfaces 5, 1701258 (2018).

    Google Scholar 

  25. Boescke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Google Scholar 

  26. Yu, C. et al. Insights into the origin of robust ferroelectricity in HfO2-based thin films from the order-disorder transition driven by vacancies. Phys. Rev. Appl. 22, 024028 (2024).

    Google Scholar 

  27. Wang, Y. et al. A stable rhombohedral phase in ferroelectric Hf(Zr)1+xO2 capacitor with ultralow coercive field. Science 381, 558–563 (2023).

    Google Scholar 

  28. Nukala, P., Wei, Y. F., de Haas, V., Guo, Q. K., Antoja-Lleonart, J. & Noheda, B. Guidelines for the stabilization of a polar rhombohedral phase in epitaxial Hf0.5Zr0.5O2 thin films. Ferroelectrics 569, 148–163 (2020).

    Google Scholar 

  29. Wei, Y. et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 17, 1095–1100 (2018).

    Google Scholar 

  30. Zhong, H. et al. Large-Scale Hf0.5 Zr0.5O2 Membranes with Robust Ferroelectricity. Adv. Mater. 34, e2109889 (2022).

    Google Scholar 

  31. Zheng Y. Z. et al. Atomic-scale characterization of defects generation during fatigue in ferroelectric Hf0.5Zr0.5O2 films: vacancy generation and lattice dislocation. Int El Devices Meet, 33.35.31-33.35.34 (2021).

  32. Chen, L., Liang, Z., Shao, S., Huang, Q., Tang, K. & Huang, R. First direct observation of the built-in electric field and oxygen vacancy migration in ferroelectric Hf0.5Zr0.5O2 film during electrical cycling. Nanoscale 15, 7014–7022 (2023).

    Google Scholar 

  33. Gao, P. et al. Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nat. Commun. 5, 3801 (2014).

    Google Scholar 

  34. Gao, P. et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat. Commun. 8, 15549 (2017).

    Google Scholar 

  35. Findlay, S. D., Azuma, S., Shibata, N., Okunishi, E. & Ikuhara, Y. Direct oxygen imaging within a ceramic interface, with some observations upon the dark contrast at the grain boundary. Ultramicroscopy 111, 285–289 (2011).

    Google Scholar 

  36. Lazić, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).

    Google Scholar 

  37. Jia, C. L., Lentzen, M. & Urban, K. Atomic-Resolution Imaging of Oxygen in Perovskite Ceramics. Science 299, 870–873 (2003).

    Google Scholar 

  38. Gao, P., Kumamoto, A., Ishikawa, R., Lugg, N., Shibata, N. & Ikuhara, Y. Picometer-scale atom position analysis in annular bright-field STEM imaging. Ultramicroscopy 184, 177–187 (2018).

    Google Scholar 

  39. LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110, 118–125 (2010).

    Google Scholar 

  40. Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).

    Google Scholar 

  41. Ophus, C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanalysis 25, 563–582 (2019).

    Google Scholar 

  42. Deb P. et al. Imaging Polarity in Two Dimensional Materials by Breaking Friedel’s Law. Ultramicroscopy 215 (2020).

  43. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-angstrom resolution. Nature 559, 343–349 (2018).

    Google Scholar 

  44. Odstrcil, M., Menzel, A. & Guizar-Sicairos, M. Iterative least-squares solver for generalized maximum-likelihood ptychography. Opt. Express 26, 3108–3123 (2018).

    Google Scholar 

  45. Schloz, M., Pekin, T. C., Chen, Z., Van den Broek, W., Muller, D. A. & Koch, C. T. Overcoming information reduced data and experimentally uncertain parameters in ptychography with regularized optimization. Opt. Express 28, 28306–28323 (2020).

    Google Scholar 

  46. Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Google Scholar 

  47. Sha, H., Cui, J. & Yu, R. Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction. Sci. Adv. 8, eabn2275 (2022).

    Google Scholar 

  48. Sha, H. et al. Sub-nanometer-scale mapping of crystal orientation and depth-dependent structure of dislocation cores in SrTiO3. Nat. Commun. 14, 162 (2023).

    Google Scholar 

  49. Yang, H. et al. Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures. Nat. Commun. 7, 12532 (2016).

    Google Scholar 

  50. Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 29, 1606–1614 (2012).

    Google Scholar 

  51. Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).

    Google Scholar 

  52. Li, P., Edo, T., Batey, D., Rodenburg, J. & Maiden, A. Breaking ambiguities in mixed state ptychography. Opt. Express 24, 9038–9052 (2016).

    Google Scholar 

  53. Chen Z. et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nature Communications 11 (2020).

  54. Chen, Z., Shao, Y.-T., Jiang, Y. & Muller, D. Three-dimensional imaging of single dopants inside crystals using multislice electron ptychography. Microsc. Microanalysis 27, 2146–2148 (2021).

    Google Scholar 

  55. Sha, H. et al. Ptychographic measurements of varying size and shape along zeolite channels. Sci. Adv. 9, eadf1151 (2023).

    Google Scholar 

  56. Dong Z. et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ. Nature, 1-6 (2024).

  57. Zhang, Y., Chen, H. X., Duan, L., Fan, J. B., Ni, L. & Ji, V. A comparison study of the Born effective charges and dielectric properties of the cubic, tetragonal, monoclinic, ortho-I, ortho-II and ortho-III phases of zirconia. Solid State Sci. 81, 58–65 (2018).

    Google Scholar 

  58. Materlik, R. C. K., A. Kersch The Origin of Ferroelectricity in HfxZr1-xO2: A Computational Investigation and a Surface Energy Model. J. Appl. Phys. 117, 134109 (2015).

    Google Scholar 

  59. Lowther, J. E., Dewhurst, J. K., Leger, J. M. & Haines, J. Relative stability of ZrO2 and HfO2 structural phases. Phys. Rev. B 60, 14485–14488 (1999).

    Google Scholar 

  60. Kisi, E. H., Howard, C. J. & Hill, R. J. Crystal-Structure of Orthorhombic Zirconia in Partially Stabilized Zirconia. J. Am. Ceram. Soc. 72, 1757–1760 (1989).

    Google Scholar 

  61. Ohtaka, O., Yamanaka, T., Kume, S., Hara, N., Asano, H. & Izumi, F. Structural-Analysis of Orthorhombic ZrO2 by High-Resolution Neutron Powder Diffraction. P Jpn Acad. B-Phys. 66, 193–196 (1990).

    Google Scholar 

  62. Qi, Y. et al. Stabilization of Competing Ferroelectric Phases of HfO2 under Epitaxial Strain. Phys. Rev. Lett. 125, 257603 (2020).

    Google Scholar 

  63. Ramanathan, S., Muller, D. A., Wilk, G. D., Park, C. M. & McIntyre, P. C. Effect of oxygen stoichiometry on the electrical properties of zirconia gate dielectrics. Appl. Phys. Lett. 79, 3311–3313 (2001).

    Google Scholar 

  64. Stemmer, S., Chen, Z. Q., Zhu, W. J. & Ma, T. P. Electron energy-loss spectroscopy study of thin film hafnium aluminates for novel gate dielectrics. J. Microsc. 210, 74–79 (2003).

    Google Scholar 

  65. Calka, P. et al. Chemical and structural properties of conducting nanofilaments in TiN/HfO2-based resistive switching structures. Nanotechnology 24, 085706 (2013).

    Google Scholar 

  66. Zhou, Y. et al. The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle. Computational Mater. Sci. 167, 143–150 (2019).

    Google Scholar 

  67. Lee, J. et al. Role of oxygen vacancies in ferroelectric or resistive switching hafnium oxide. Nano Convergence 10, 55 (2023).

    Google Scholar 

  68. Chisholm, M. F., Luo, W., Oxley, M. P., Pantelides, S. T. & Lee, H. N. Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 105, 197602 (2010).

    Google Scholar 

  69. Kim, S. J., Mohan, J., Summerfelt, S. R. & Kim, J. Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances. Jom 71, 246–255 (2018).

    Google Scholar 

  70. Cheema, S. S. et al. Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).

    Google Scholar 

  71. Li, M. et al. Direct observation of weakened interface clamping effect enabled ferroelastic domain switching. Acta Mater. 171, 184–189 (2019).

    Google Scholar 

  72. Jia, C.-L., Mi, S.-B., Urban, K., Vrejoiu, I., Alexe, M. & Hesse, D. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008).

    Google Scholar 

  73. Bednyakov, P. S., Sturman, B. I., Sluka, T., Tagantsev, A. K. & Yudin, P. V. Physics and applications of charged domain walls. Npj Comput Mater. 4, 65 (2018).

    Google Scholar 

  74. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Google Scholar 

  75. Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures. Science 303, 488–491 (2004).

    Google Scholar 

  76. Zhou P. A. et al. Intrinsic 90° charged domain wall and its effects on ferroelectric properties. Acta Mater 232 (2022).

  77. Zheng Y. Z. et al. Direct atomic-scale visualization of the 90° domain walls and their migrations in Hf0.5Zr0.5O2 ferroelectric thin films. Mater Today Nano 24 (2023).

  78. Yang, W., Sha, H., Cui, J., Mao, L. & Yu, R. Local-orbital ptychography for ultrahigh-resolution imaging. Nat. Nanotechnol. 19, 612–617 (2024).

    Google Scholar 

  79. Wakonig, K. et al. PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data. J. Appl Crystallogr 53, 574–586 (2020).

    Google Scholar 

  80. Silinga A., Allen C., Barthel J., Ophus C., MacLaren I. Measurement of Atomic Modulation Direction Using the Azimuthal Variation of First-Order Laue Zone Electron Diffraction. Microscopy and microanalysis: the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 29 (2023).

  81. Ziatdinov, M., Ghosh, A., Wong, C. Y. & Kalinin, S. V. AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy. Nat. Mach. Intell. 4, 1101–1112 (2022).

    Google Scholar 

  82. Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).

    Google Scholar 

  83. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    Google Scholar 

  84. Mukherjee, B., Fedorova, N. S. & Íñiguez-González, J. First-principles predictions of HfO2-based ferroelectric superlattices. Npj Comput Mater. 10, 153 (2024).

    Google Scholar 

  85. Tariq A. First-principle calculations of ferroelectric properties of HfO2 and ZrO2. (2022).

  86. Madsen, J. & Susi, T. The abTEM code: transmission electron microscopy from first principles. Open Res. Eur. 1, 24 (2021).

    Google Scholar 

  87. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52125307 to P.G., 12222414 to C.G., 12504198 to J.D.) and the open research fund of Song-shan Lake Materials Laboratory (2022SLABFK03). P.G. acknowledges the support from the New Cornerstone Science Foundation through the XPLORER PRIZE. We acknowledge Electron Microscopy Laboratory of Peking University for the use of electron microscopes and High-performance Computing Platform of Peking University for providing computational resources. We acknowledge the assistance of Prof. Zhen Chen from Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; We thank the discussion of Yi Jiang from the Advanced Photon Source, Argonne National Laboratory, USA.

Author information

Author notes
  1. These authors contributed equally: Xiaoyue Gao, Zhuohui Liu.

Authors and Affiliations

  1. International Center for Quantum Materials, School of Physics, Peking University, Beijing, China

    Xiaoyue Gao, Bo Han, Xiaowen Zhang, Ruilin Mao, Ruochen Shi, Ruixue Zhu, Jiade Li & Peng Gao

  2. Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China

    Xiaoyue Gao, Bo Han, Xiaowen Zhang, Ruilin Mao, Ruochen Shi, Ruixue Zhu, Tao Wang, Jiade Li & Peng Gao

  3. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China

    Zhuohui Liu, Kuijuan Jin & Chen Ge

  4. School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China

    Jiangbo Lu

  5. Tsientang Institute for Advanced Study, Zhejiang, China

    Peng Gao

  6. Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China

    Peng Gao

  7. Collaborative Innovation Center of Quantum Matter, Beijing, China

    Peng Gao

Authors
  1. Xiaoyue Gao
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhuohui Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. Bo Han
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiaowen Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Ruilin Mao
    View author publications

    Search author on:PubMed Google Scholar

  6. Ruochen Shi
    View author publications

    Search author on:PubMed Google Scholar

  7. Ruixue Zhu
    View author publications

    Search author on:PubMed Google Scholar

  8. Jiangbo Lu
    View author publications

    Search author on:PubMed Google Scholar

  9. Tao Wang
    View author publications

    Search author on:PubMed Google Scholar

  10. Kuijuan Jin
    View author publications

    Search author on:PubMed Google Scholar

  11. Jiade Li
    View author publications

    Search author on:PubMed Google Scholar

  12. Chen Ge
    View author publications

    Search author on:PubMed Google Scholar

  13. Peng Gao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

P.G. conceived the project. X.Y.G. performed the ptychographic experiments, reconstruction and data analyses with the assistance of B.H., R.L.M., R.C.S., R.X.Z., J.B.L., T.W., and J.D.L.; X.W.Z. performed the STEM-EELS experiment and analysis. Z.H.L., K.J.J., and C.G. prepared the HZO sample. X.Y.G. wrote the manuscript under the direction of J.D.L. and P.G.; All the authors contributed to this work through useful discussion and/or comments to the manuscript.

Corresponding authors

Correspondence to Jiade Li, Chen Ge or Peng Gao.

Ethics declarations

Competing interests

The authors declare no competing interest

Peer review

Peer review information

Nature Communications thanks Andreas Beyer, Woonbae Sohn, Maxime Le Ster and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Liu, Z., Han, B. et al. Precise structure and polarization determination of Hf0.5Zr0.5O2 with electron ptychography. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69514-w

Download citation

  • Received: 13 November 2025

  • Accepted: 02 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69514-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing