Abstract
Rare-earth infinite-layer nickelates are emerging unconventional superconductors, with materials synthesis largely limited to early lanthanide compounds. Here, we report phase-pure samarium-based nickelate thin films on (LaAlO3)0.3(Sr2TaAlO6)0.7 (001) substrates, including the first demonstration of Sm1-xSrxNiO2. Co-doped compounds achieve a record-small c-axis parameter (3.26 Å) and superconducting transitions up to 32.5 K, revealing a clear correlation between decreasing c-axis parameter and increasing critical temperature across different rare-earth systems. Angle-dependent magnetoresistance shows a hybrid 2D/3D superconductivity with enhanced rare-earth 5d–Ni 3 d orbital coupling, confirmed by resonant inelastic X-ray scattering. In addition, increasing Eu concentration drives a shift toward 3D superconductivity, and Eu-containing samples exhibit distinctive negative magnetoresistance even in the superconducting state. These findings advocate clear materials design principles for higher transition temperatures and exotic physics in infinite-layer nickelate superconductors through structural engineering of the rare-earth site.
Data availability
The data that support the findings of this study are available within the article and the Supplementary Information. All data generated in this study are provided in the Source Data file. Source data are provided with this paper (https://doi.org/10.6084/m9.figshare.31005019).
References
Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).
Wang, B. Y., Lee, K. & Goodge, B. H. Experimental progress in superconducting nickelates. Annu. Rev. Condens. Matter Phys. 15, 305–324 (2024).
Gu, Q. & Wen, H.-H. Superconductivity in nickel-based 112 systems. Innovation 3, (2022).
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Hayward, M. A. Topochemical reactions of layered transition-metal oxides. Semicond. Sci. Technol. 29, 064010 (2014).
Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).
Goodge, B. H. et al. Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates. Proc. Natl. Acad. Sci. 118, e2007683118 (2021).
Lee, K.-W. Infinite-layer LaNiO2 Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).
Sun, W. et al. Electronic structure of superconducting infinite-layer lanthanum nickelates. Sci. Adv. 11, eadr5116 (2025).
Ding, X. et al. Cuprate-like electronic structures in infinite-layer nickelates with substantial hole dopings. Nat. Sci. Rev. 11, nwae194 (2024).
Dong, Z. et al. Topochemical synthesis and electronic structure of high-crystallinity infinite-layer nickelates on an orthorhombic substrate. Nano Lett. 25, 1233–1241 (2025).
Zhang, G.-M., Yang, Y. & Zhang, F.-C. Self-doped Mott insulator for parent compounds of nickelate superconductors. Phys. Rev. B 101, 020501 (2020).
Jiang, P., Si, L., Liao, Z. & Zhong, Z. Electronic structure of rare-earth infinite-layer RNiO2 (R=La,Nd). Phys. Rev. B 100, 201106 (2019).
Bandyopadhyay, S., Adhikary, P., Das, T., Dasgupta, I. & Saha-Dasgupta, T. Superconductivity in infinite-layer nickelates: Role of f orbitals. Phys. Rev. B 102, 220502 (2020).
Wang, B. Y. et al. Effects of rare-earth magnetism on the superconducting upper critical field in infinite-layer nickelates. Sci. Adv. 9, eadf6655 (2023).
Lee, K. et al. Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater. 8, 041107 (2020).
Osada, M. et al. Nickelate superconductivity without rare-earth magnetism: (La,Sr)NiO2. Adv. Mater. 33, 2104083 (2021).
Wei, W. et al. Large upper critical fields and dimensionality crossover of superconductivity in the infinite-layer nickelate La0.8Sr0.2NiO2. Phys. Rev. B 107, L220503 (2023).
Zeng, S. et al. Superconductivity in infinite-layer nickelate La1-xCaxNiO2 thin films. Sci. Adv. 8, eabl9927 (2022).
Osada, M., Wang, B. Y., Lee, K., Li, D. & Hwang, H. Y. Phase diagram of infinite layer praseodymium nickelate Pr1-xSrxNiO2 thin films. Phys. Rev. Mater. 4, 121801 (2020).
Wang, N. N. et al. Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films. Nat. Commun. 13, 4367 (2022).
Li, D. et al. Superconducting dome in Nd1-xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).
Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1-xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).
Lee, K. et al. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2. Nature 619, 288–292 (2023).
Lee, Y. et al. Synthesis of superconducting freestanding infinite-layer nickelate heterostructures on the millimetre scale. Nat. Synth., https://doi.org/10.1038/s44160-024-00714-2.
Wei, W., Vu, D., Zhang, Z., Walker, F. J. & Ahn, C. H. Superconducting Nd1-xEuxNiO2 thin films using in situ synthesis. Sci. Adv. 9, eadh3327 (2023).
Lechermann, F. Multiorbital processes rule the Nd1-xSrxNiO2 normal state. Phys. Rev. X 10, 041002 (2020).
Wang, Z., Zhang, G.-M., Yang, Y. & Zhang, F.-C. Distinct pairing symmetries of superconductivity in infinite-layer nickelates. Phys. Rev. B 102, 220501 (2020).
Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1-xFx. Nature 453, 761–762 (2008).
Chen, G. F. et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFxFeAs. Phys. Rev. Lett. 100, 247002 (2008).
Torrance, J. B., Lacorre, P., Nazzal, A. I., Ansaldo, E. J. & Niedermayer, C. H. Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. Phys. Rev. B 45, 8209–8212 (1992).
Catalano, S. et al. Rare-earth nickelates RNiO3: thin films and heterostructures. Rep. Prog. Phys. 81, 046501 (2018).
Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).
Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).
Taillefer, L. Scattering and pairing in cuprate superconductors. Annu. Rev. Condens. Matter Phys. 1, 51–70 (2010).
Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).
Zeng, Z., Guenzburger, D., Ellis, D. E. & Baggio-Saitovitch, E. M. Effect of magnetism on superconductivity in rare-earth compounds RENi2B2C. Physica C Supercond. 271, 23–31 (1996).
Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).
Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).
Zhu, Y. et al. Superconductivity in pressurized trilayer La4Ni3O10−δ single crystals. Nature 631, 531–536 (2024).
Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature 638, 935–940 (2025).
Zhou, G. et al. Ambient-pressure superconductivity onset above 40 K in (La,Pr)3Ni2O7 films. Nature 640, 641–646 (2025).
Gao, Q. et al. Magnetic excitations in strained infinite-layer nickelate PrNiO2 films. Nat. Commun. 15, 5576 (2024).
Phillips, J. M. Substrate selection for high-temperature superconducting thin films. J. Appl. Phys. 79, 1829–1848 (1996).
Sun, W. et al. Evidence for anisotropic superconductivity beyond pauli limit in infinite-layer Lanthanum nickelates. Adv. Mater. 35, 2303400 (2023).
Chow, S. L. E., Luo, Z. & Ariando Bulk superconductivity near 40 K in hole-doped SmNiO2 at ambient pressure. Nature 642, 58–63 (2025).
Attfield, J. P., Kharlanov, A. L. & McAllister, J. A. Cation effects in doped La2CuO4 superconductors. Nature 394, 157–159 (1998).
Fujita, K., Noda, T., Kojima, K. M., Eisaki, H. & Uchida, S. Effect of disorder outside the CuO2 planes on Tc of copper oxide superconductors. Phys. Rev. Lett. 95, 097006 (2005).
Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).
Fujita, M., Goka, H., Yamada, K., Tranquada, J. M. & Regnault, L. P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.05CuO4. Phys. Rev. B 70, 104517 (2004).
García-Muñoz, J. L., Suaaidi, M., Martínez-Lope, M. J. & Alonso, J. A. Influence of carrier injection on the metal-insulator transition in electron- and hole-doped R1-xAxNiO3 perovskites. Phys. Rev. B 52, 13563–13569 (1995).
Cheong, S.-W., Hwang, H. Y., Batlogg, B., Cooper, A. S. & Canfield, P. C. Electron-hole doping of the metal-insulator transition compound RENiO3. Physica B 194–196, 1087–1088 (1994).
Stankiewicz, J., Bartolomé, J. & Fruchart, D. Spin disorder scattering in magnetic metallic alloys. Phys. Rev. Lett. 89, 106602 (2002).
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A 32, 751–767 (1976).
He, X., Gozar, A., Sundling, R. & Božović, I. High-precision measurement of magnetic penetration depth in superconducting films. Rev. Sci. Instrum. 87, 113903 (2016).
Wang, B. Y. et al. Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat. Phys. 17, 473–477 (2021).
Xiang, Y. et al. Physical properties revealed by transport measurements for superconducting Nd0.8Sr0.2NiO2 thin films. Chin. Phys. Lett. 38, 047401–047401 (2021).
Palstra, T. T. M., Batlogg, B., Schneemeyer, L. F. & Waszczak, J. V. Thermally Activated Dissipation in Bi2.2Sr2Ca0.8Cu2O8+δ. Phys. Rev. Lett. 61, 1662–1665 (1988).
Chow, L. E. et al. Pauli-limit violation in lanthanide infinite-layer nickelate superconductors. arXiv https://doi.org/10.48550/arXiv.2204.12606.
Rossi, M. et al. Orbital and spin character of doped carriers in infinite-layer nickelates. Phys. Rev. B 104, L220505 (2021).
Rossi, M. et al. Universal orbital and magnetic structures in infinite-layer nickelates. Phys. Rev. B 109, 024512 (2024).
Yang, M. et al. Robust field re-entrant superconductivity in ferromagnetic infinite-layer rare-earth nickelates. arXiv https://doi.org/10.48550/arXiv.2508.14666 (2025).
Krockenberger, Y. et al. Superconductivity phase diagrams for the electron-doped cuprates R2-xCexCuO4 (R=La, Pr, Nd, Sm, and Eu). Phys. Rev. B 77, 060505 (2008).
Been, E. et al. Electronic structure trends across the rare-earth series in superconducting infinite-layer nickelates. Phys. Rev. X 11, 011050 (2021).
Lu, H. et al. Magnetic excitations in infinite-layer nickelates. Science 373, 213–216 (2021).
Rossi, M. et al. A broken translational symmetry state in an infinite-layer nickelate. Nat. Phys. 18, 869–873 (2022).
Hayashida, S. et al. Investigation of spin excitations and charge order in bulk crystals of the infinite-layer nickelate LaNiO2. Phys. Rev. B 109, 235106 (2024).
Parzyck, C. T. et al. Absence of 3a0 charge density wave order in the infinite-layer nickelate NdNiO2. Nat. Mater. 23, 486–491 (2024).
Singh, A. et al. Development of the Soft X-ray AGM–AGS RIXS beamline at the Taiwan Photon Source. J. Synchrotron Radiat. 28, 977–986 (2021).
Fang, Z. et al. Design of a 42 T Resistive Magnet at the CHMFL. IEEE Trans. Appl. Superconduct. 34, 1–4 (2024).
Acknowledgements
We thank Ariando and Lin Er Chow for discussions. We acknowledge the funding support from the National Natural Science Foundation of China (12174325) and a Guangdong Basic and Applied Basic Research Grant (2023A1515011352). The research was supported by research grants from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China, under Early Career Scheme, General Research Fund and ANR-RGC Joint Researh Scheme (CityU 21301221, CityU 11309622, CityU 11300923, CityU 11313325, A-CityU102/23 and CUHK 24306223). Part of the work utilized the equipment support through a Collaborative Research Equipment Grant from RGC (C1018-22E). Part of this work was supported by the National Key R&D Program of China (2024YFA1408101 and 2022YFA1403101), the Natural Science Foundation of China (92265112, 12374455 and 52388201, 92565303, 12504161, and 12504166), the Guangdong Major Project of Basic Research (2025B0303000004), the Guangdong Provincial Quantum Science Strategic Initiative (GDZX2501001, GDZX2401004, GDZX2201001), the Shenzhen Science and Technology Program (KQTD20240729102026004), and the Shenzhen Municipal Funding Co-Construction Program Project (SZZX2301004 and SZZX2401001). The high-magnetic-field work was supported by the National Key R&D Program of China (2023YFA1607701) and National Natural Science Foundation of China (51627901). We thank the staff members of the SMA and HM System (https://cstr.cn/31125.02.SHMFF.SM2.SMA, https://cstr.cn/31125.02.SHMFF.HM) at the Steady High Magnetic Field Facility, Chinese Academy of Sciences (https://cstr.cn/31125.02.SHMFF), for providing technical support and assistance in data collection and analysis. The resonant X-ray scattering experiments were supported by National Science and Technology Council (NSTC), Taiwan (Grant No. 113-2112-M-213-016). P.G. acknowledges the support from the New Cornerstone Science Foundation through the XPLORER PRIZE. We acknowledge Electron Microscopy Laboratory of Peking University for the use of electron microscopes. We acknowledge the support from International Station of Quantum Materials.
Author information
Authors and Affiliations
Contributions
M.Y., H.W. and J.T. contributed equally to this work. M.Y., Z.C. and D.L. conceived the research project. M.Y. and J.T. grew the samples with assistance from W.X., Z.D., B.F., L.S. and Z.P. H.W. and X.W. performed the in-situ reduction experiments. H.W., X.W., M.Y. and G.Z. performed the XRD characterizations. H.W. conducted the mutual inductance measurements, H.W. and J.T. performed the transport measurements. J.L., R.M. and P.G. conducted the STEM experiments. A.W., Z.W., M.Y. and H.H. conducted the high field measurements with the help from W.M., C.X., L.P. and Q.L. Y.W. and Q.W. conducted the RIXS measurements with the help from J.O., H.-Y.H. and D.-J.H. H.H., Q.W., P.G., Z.C. and D.L. acquired funding support. M.Y., J.T., W.X. and D.L. wrote the manuscript with contributions from all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Yingying Peng, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Yang, M., Wang, H., Tang, J. et al. Enhanced superconductivity and mixed-dimensional behaviour in infinite-layer samarium nickelate thin films. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69650-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69650-3