Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Enhanced superconductivity and mixed-dimensional behaviour in infinite-layer samarium nickelate thin films
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Enhanced superconductivity and mixed-dimensional behaviour in infinite-layer samarium nickelate thin films

  • Mingwei Yang1,2 na1,
  • Heng Wang3 na1,
  • Jiayin Tang1 na1,
  • Junping Luo4,
  • Xianfeng Wu  ORCID: orcid.org/0009-0005-4623-13193,
  • Wenjing Xu1,
  • Aile Wang5,6,
  • Yuetong Wu  ORCID: orcid.org/0009-0009-8774-05737,
  • Ruilin Mao4,
  • Ze Wang8,
  • Zhicheng Pei1,
  • Guangdi Zhou3,
  • Zhengang Dong  ORCID: orcid.org/0009-0009-8737-61421,2,
  • Bohan Feng1,2,
  • Lingchi Shi  ORCID: orcid.org/0009-0002-1627-45781,
  • Wenjie Meng  ORCID: orcid.org/0000-0002-0446-12058,
  • Chuanying Xi8,
  • Li Pi8,
  • Qingyou Lu  ORCID: orcid.org/0000-0003-1934-81655,6,8,
  • Jun Okamoto  ORCID: orcid.org/0000-0003-0538-66039,
  • Hsiao-Yu Huang  ORCID: orcid.org/0000-0002-0843-00009,
  • Di-Jing Huang  ORCID: orcid.org/0000-0003-4750-84539,
  • Haoliang Huang  ORCID: orcid.org/0000-0002-5686-55193,10,
  • Qisi Wang  ORCID: orcid.org/0000-0002-8741-75597,
  • Peng Gao  ORCID: orcid.org/0000-0001-9868-21154,11,
  • Zhuoyu Chen  ORCID: orcid.org/0000-0002-6111-75583,10 &
  • …
  • Danfeng Li  ORCID: orcid.org/0000-0001-6894-67651,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Design, synthesis and processing
  • Structure of solids and liquids
  • Superconducting properties and materials
  • Surfaces, interfaces and thin films

Abstract

Rare-earth infinite-layer nickelates are emerging unconventional superconductors, with materials synthesis largely limited to early lanthanide compounds. Here, we report phase-pure samarium-based nickelate thin films on (LaAlO3)0.3(Sr2TaAlO6)0.7 (001) substrates, including the first demonstration of Sm1-xSrxNiO2. Co-doped compounds achieve a record-small c-axis parameter (3.26 Å) and superconducting transitions up to 32.5 K, revealing a clear correlation between decreasing c-axis parameter and increasing critical temperature across different rare-earth systems. Angle-dependent magnetoresistance shows a hybrid 2D/3D superconductivity with enhanced rare-earth 5d–Ni 3 d orbital coupling, confirmed by resonant inelastic X-ray scattering. In addition, increasing Eu concentration drives a shift toward 3D superconductivity, and Eu-containing samples exhibit distinctive negative magnetoresistance even in the superconducting state. These findings advocate clear materials design principles for higher transition temperatures and exotic physics in infinite-layer nickelate superconductors through structural engineering of the rare-earth site.

Data availability

The data that support the findings of this study are available within the article and the Supplementary Information. All data generated in this study are provided in the Source Data file. Source data are provided with this paper (https://doi.org/10.6084/m9.figshare.31005019).

References

  1. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Google Scholar 

  2. Wang, B. Y., Lee, K. & Goodge, B. H. Experimental progress in superconducting nickelates. Annu. Rev. Condens. Matter Phys. 15, 305–324 (2024).

    Google Scholar 

  3. Gu, Q. & Wen, H.-H. Superconductivity in nickel-based 112 systems. Innovation 3, (2022).

  4. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Google Scholar 

  5. Hayward, M. A. Topochemical reactions of layered transition-metal oxides. Semicond. Sci. Technol. 29, 064010 (2014).

    Google Scholar 

  6. Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).

    Google Scholar 

  7. Goodge, B. H. et al. Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates. Proc. Natl. Acad. Sci. 118, e2007683118 (2021).

    Google Scholar 

  8. Lee, K.-W. Infinite-layer LaNiO2 Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

    Google Scholar 

  9. Sun, W. et al. Electronic structure of superconducting infinite-layer lanthanum nickelates. Sci. Adv. 11, eadr5116 (2025).

    Google Scholar 

  10. Ding, X. et al. Cuprate-like electronic structures in infinite-layer nickelates with substantial hole dopings. Nat. Sci. Rev. 11, nwae194 (2024).

    Google Scholar 

  11. Dong, Z. et al. Topochemical synthesis and electronic structure of high-crystallinity infinite-layer nickelates on an orthorhombic substrate. Nano Lett. 25, 1233–1241 (2025).

    Google Scholar 

  12. Zhang, G.-M., Yang, Y. & Zhang, F.-C. Self-doped Mott insulator for parent compounds of nickelate superconductors. Phys. Rev. B 101, 020501 (2020).

    Google Scholar 

  13. Jiang, P., Si, L., Liao, Z. & Zhong, Z. Electronic structure of rare-earth infinite-layer RNiO2 (R=La,Nd). Phys. Rev. B 100, 201106 (2019).

    Google Scholar 

  14. Bandyopadhyay, S., Adhikary, P., Das, T., Dasgupta, I. & Saha-Dasgupta, T. Superconductivity in infinite-layer nickelates: Role of f orbitals. Phys. Rev. B 102, 220502 (2020).

    Google Scholar 

  15. Wang, B. Y. et al. Effects of rare-earth magnetism on the superconducting upper critical field in infinite-layer nickelates. Sci. Adv. 9, eadf6655 (2023).

    Google Scholar 

  16. Lee, K. et al. Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater. 8, 041107 (2020).

    Google Scholar 

  17. Osada, M. et al. Nickelate superconductivity without rare-earth magnetism: (La,Sr)NiO2. Adv. Mater. 33, 2104083 (2021).

    Google Scholar 

  18. Wei, W. et al. Large upper critical fields and dimensionality crossover of superconductivity in the infinite-layer nickelate La0.8Sr0.2NiO2. Phys. Rev. B 107, L220503 (2023).

    Google Scholar 

  19. Zeng, S. et al. Superconductivity in infinite-layer nickelate La1-xCaxNiO2 thin films. Sci. Adv. 8, eabl9927 (2022).

    Google Scholar 

  20. Osada, M., Wang, B. Y., Lee, K., Li, D. & Hwang, H. Y. Phase diagram of infinite layer praseodymium nickelate Pr1-xSrxNiO2 thin films. Phys. Rev. Mater. 4, 121801 (2020).

    Google Scholar 

  21. Wang, N. N. et al. Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films. Nat. Commun. 13, 4367 (2022).

    Google Scholar 

  22. Li, D. et al. Superconducting dome in Nd1-xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).

    Google Scholar 

  23. Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1-xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).

    Google Scholar 

  24. Lee, K. et al. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2. Nature 619, 288–292 (2023).

    Google Scholar 

  25. Lee, Y. et al. Synthesis of superconducting freestanding infinite-layer nickelate heterostructures on the millimetre scale. Nat. Synth., https://doi.org/10.1038/s44160-024-00714-2.

  26. Wei, W., Vu, D., Zhang, Z., Walker, F. J. & Ahn, C. H. Superconducting Nd1-xEuxNiO2 thin films using in situ synthesis. Sci. Adv. 9, eadh3327 (2023).

    Google Scholar 

  27. Lechermann, F. Multiorbital processes rule the Nd1-xSrxNiO2 normal state. Phys. Rev. X 10, 041002 (2020).

    Google Scholar 

  28. Wang, Z., Zhang, G.-M., Yang, Y. & Zhang, F.-C. Distinct pairing symmetries of superconductivity in infinite-layer nickelates. Phys. Rev. B 102, 220501 (2020).

    Google Scholar 

  29. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1-xFx. Nature 453, 761–762 (2008).

    Google Scholar 

  30. Chen, G. F. et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFxFeAs. Phys. Rev. Lett. 100, 247002 (2008).

    Google Scholar 

  31. Torrance, J. B., Lacorre, P., Nazzal, A. I., Ansaldo, E. J. & Niedermayer, C. H. Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. Phys. Rev. B 45, 8209–8212 (1992).

    Google Scholar 

  32. Catalano, S. et al. Rare-earth nickelates RNiO3: thin films and heterostructures. Rep. Prog. Phys. 81, 046501 (2018).

    Google Scholar 

  33. Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).

    Google Scholar 

  34. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    Google Scholar 

  35. Taillefer, L. Scattering and pairing in cuprate superconductors. Annu. Rev. Condens. Matter Phys. 1, 51–70 (2010).

    Google Scholar 

  36. Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).

    Google Scholar 

  37. Zeng, Z., Guenzburger, D., Ellis, D. E. & Baggio-Saitovitch, E. M. Effect of magnetism on superconductivity in rare-earth compounds RENi2B2C. Physica C Supercond. 271, 23–31 (1996).

    Google Scholar 

  38. Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).

    Google Scholar 

  39. Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

    Google Scholar 

  40. Zhu, Y. et al. Superconductivity in pressurized trilayer La4Ni3O10−δ single crystals. Nature 631, 531–536 (2024).

    Google Scholar 

  41. Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature 638, 935–940 (2025).

    Google Scholar 

  42. Zhou, G. et al. Ambient-pressure superconductivity onset above 40 K in (La,Pr)3Ni2O7 films. Nature 640, 641–646 (2025).

    Google Scholar 

  43. Gao, Q. et al. Magnetic excitations in strained infinite-layer nickelate PrNiO2 films. Nat. Commun. 15, 5576 (2024).

    Google Scholar 

  44. Phillips, J. M. Substrate selection for high-temperature superconducting thin films. J. Appl. Phys. 79, 1829–1848 (1996).

    Google Scholar 

  45. Sun, W. et al. Evidence for anisotropic superconductivity beyond pauli limit in infinite-layer Lanthanum nickelates. Adv. Mater. 35, 2303400 (2023).

    Google Scholar 

  46. Chow, S. L. E., Luo, Z. & Ariando Bulk superconductivity near 40 K in hole-doped SmNiO2 at ambient pressure. Nature 642, 58–63 (2025).

    Google Scholar 

  47. Attfield, J. P., Kharlanov, A. L. & McAllister, J. A. Cation effects in doped La2CuO4 superconductors. Nature 394, 157–159 (1998).

    Google Scholar 

  48. Fujita, K., Noda, T., Kojima, K. M., Eisaki, H. & Uchida, S. Effect of disorder outside the CuO2 planes on Tc of copper oxide superconductors. Phys. Rev. Lett. 95, 097006 (2005).

    Google Scholar 

  49. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Google Scholar 

  50. Fujita, M., Goka, H., Yamada, K., Tranquada, J. M. & Regnault, L. P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.05CuO4. Phys. Rev. B 70, 104517 (2004).

    Google Scholar 

  51. García-Muñoz, J. L., Suaaidi, M., Martínez-Lope, M. J. & Alonso, J. A. Influence of carrier injection on the metal-insulator transition in electron- and hole-doped R1-xAxNiO3 perovskites. Phys. Rev. B 52, 13563–13569 (1995).

    Google Scholar 

  52. Cheong, S.-W., Hwang, H. Y., Batlogg, B., Cooper, A. S. & Canfield, P. C. Electron-hole doping of the metal-insulator transition compound RENiO3. Physica B 194–196, 1087–1088 (1994).

    Google Scholar 

  53. Stankiewicz, J., Bartolomé, J. & Fruchart, D. Spin disorder scattering in magnetic metallic alloys. Phys. Rev. Lett. 89, 106602 (2002).

    Google Scholar 

  54. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A 32, 751–767 (1976).

    Google Scholar 

  55. He, X., Gozar, A., Sundling, R. & Božović, I. High-precision measurement of magnetic penetration depth in superconducting films. Rev. Sci. Instrum. 87, 113903 (2016).

    Google Scholar 

  56. Wang, B. Y. et al. Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat. Phys. 17, 473–477 (2021).

    Google Scholar 

  57. Xiang, Y. et al. Physical properties revealed by transport measurements for superconducting Nd0.8Sr0.2NiO2 thin films. Chin. Phys. Lett. 38, 047401–047401 (2021).

    Google Scholar 

  58. Palstra, T. T. M., Batlogg, B., Schneemeyer, L. F. & Waszczak, J. V. Thermally Activated Dissipation in Bi2.2Sr2Ca0.8Cu2O8+δ. Phys. Rev. Lett. 61, 1662–1665 (1988).

    Google Scholar 

  59. Chow, L. E. et al. Pauli-limit violation in lanthanide infinite-layer nickelate superconductors. arXiv https://doi.org/10.48550/arXiv.2204.12606.

  60. Rossi, M. et al. Orbital and spin character of doped carriers in infinite-layer nickelates. Phys. Rev. B 104, L220505 (2021).

    Google Scholar 

  61. Rossi, M. et al. Universal orbital and magnetic structures in infinite-layer nickelates. Phys. Rev. B 109, 024512 (2024).

    Google Scholar 

  62. Yang, M. et al. Robust field re-entrant superconductivity in ferromagnetic infinite-layer rare-earth nickelates. arXiv https://doi.org/10.48550/arXiv.2508.14666 (2025).

  63. Krockenberger, Y. et al. Superconductivity phase diagrams for the electron-doped cuprates R2-xCexCuO4 (R=La, Pr, Nd, Sm, and Eu). Phys. Rev. B 77, 060505 (2008).

    Google Scholar 

  64. Been, E. et al. Electronic structure trends across the rare-earth series in superconducting infinite-layer nickelates. Phys. Rev. X 11, 011050 (2021).

    Google Scholar 

  65. Lu, H. et al. Magnetic excitations in infinite-layer nickelates. Science 373, 213–216 (2021).

    Google Scholar 

  66. Rossi, M. et al. A broken translational symmetry state in an infinite-layer nickelate. Nat. Phys. 18, 869–873 (2022).

    Google Scholar 

  67. Hayashida, S. et al. Investigation of spin excitations and charge order in bulk crystals of the infinite-layer nickelate LaNiO2. Phys. Rev. B 109, 235106 (2024).

    Google Scholar 

  68. Parzyck, C. T. et al. Absence of 3a0 charge density wave order in the infinite-layer nickelate NdNiO2. Nat. Mater. 23, 486–491 (2024).

    Google Scholar 

  69. Singh, A. et al. Development of the Soft X-ray AGM–AGS RIXS beamline at the Taiwan Photon Source. J. Synchrotron Radiat. 28, 977–986 (2021).

    Google Scholar 

  70. Fang, Z. et al. Design of a 42 T Resistive Magnet at the CHMFL. IEEE Trans. Appl. Superconduct. 34, 1–4 (2024).

    Google Scholar 

Download references

Acknowledgements

We thank Ariando and Lin Er Chow for discussions. We acknowledge the funding support from the National Natural Science Foundation of China (12174325) and a Guangdong Basic and Applied Basic Research Grant (2023A1515011352). The research was supported by research grants from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China, under Early Career Scheme, General Research Fund and ANR-RGC Joint Researh Scheme (CityU 21301221, CityU 11309622, CityU 11300923, CityU 11313325, A-CityU102/23 and CUHK 24306223). Part of the work utilized the equipment support through a Collaborative Research Equipment Grant from RGC (C1018-22E). Part of this work was supported by the National Key R&D Program of China (2024YFA1408101 and 2022YFA1403101), the Natural Science Foundation of China (92265112, 12374455 and 52388201, 92565303, 12504161, and 12504166), the Guangdong Major Project of Basic Research (2025B0303000004), the Guangdong Provincial Quantum Science Strategic Initiative (GDZX2501001, GDZX2401004, GDZX2201001), the Shenzhen Science and Technology Program (KQTD20240729102026004), and the Shenzhen Municipal Funding Co-Construction Program Project (SZZX2301004 and SZZX2401001). The high-magnetic-field work was supported by the National Key R&D Program of China (2023YFA1607701) and National Natural Science Foundation of China (51627901). We thank the staff members of the SMA and HM System (https://cstr.cn/31125.02.SHMFF.SM2.SMA, https://cstr.cn/31125.02.SHMFF.HM) at the Steady High Magnetic Field Facility, Chinese Academy of Sciences (https://cstr.cn/31125.02.SHMFF), for providing technical support and assistance in data collection and analysis. The resonant X-ray scattering experiments were supported by National Science and Technology Council (NSTC), Taiwan (Grant No. 113-2112-M-213-016). P.G. acknowledges the support from the New Cornerstone Science Foundation through the XPLORER PRIZE. We acknowledge Electron Microscopy Laboratory of Peking University for the use of electron microscopes. We acknowledge the support from International Station of Quantum Materials.

Author information

Author notes
  1. These authors contributed equally: Mingwei Yang, Heng Wang, Jiayin Tang.

Authors and Affiliations

  1. Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China

    Mingwei Yang, Jiayin Tang, Wenjing Xu, Zhicheng Pei, Zhengang Dong, Bohan Feng, Lingchi Shi & Danfeng Li

  2. Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China

    Mingwei Yang, Zhengang Dong, Bohan Feng & Danfeng Li

  3. Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen, China

    Heng Wang, Xianfeng Wu, Guangdi Zhou, Haoliang Huang & Zhuoyu Chen

  4. International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China

    Junping Luo, Ruilin Mao & Peng Gao

  5. Hefei National Research Center for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, China

    Aile Wang & Qingyou Lu

  6. Hefei National Laboratory, University of Science and Technology of China, Hefei, China

    Aile Wang & Qingyou Lu

  7. Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China

    Yuetong Wu & Qisi Wang

  8. Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, China

    Ze Wang, Wenjie Meng, Chuanying Xi, Li Pi & Qingyou Lu

  9. National Synchrotron Radiation Research Center, Hsinchu, Taiwan

    Jun Okamoto, Hsiao-Yu Huang & Di-Jing Huang

  10. Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen, China

    Haoliang Huang & Zhuoyu Chen

  11. Collaborative Innovation Center of Quantum Matter, Beijing, China

    Peng Gao

Authors
  1. Mingwei Yang
    View author publications

    Search author on:PubMed Google Scholar

  2. Heng Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Jiayin Tang
    View author publications

    Search author on:PubMed Google Scholar

  4. Junping Luo
    View author publications

    Search author on:PubMed Google Scholar

  5. Xianfeng Wu
    View author publications

    Search author on:PubMed Google Scholar

  6. Wenjing Xu
    View author publications

    Search author on:PubMed Google Scholar

  7. Aile Wang
    View author publications

    Search author on:PubMed Google Scholar

  8. Yuetong Wu
    View author publications

    Search author on:PubMed Google Scholar

  9. Ruilin Mao
    View author publications

    Search author on:PubMed Google Scholar

  10. Ze Wang
    View author publications

    Search author on:PubMed Google Scholar

  11. Zhicheng Pei
    View author publications

    Search author on:PubMed Google Scholar

  12. Guangdi Zhou
    View author publications

    Search author on:PubMed Google Scholar

  13. Zhengang Dong
    View author publications

    Search author on:PubMed Google Scholar

  14. Bohan Feng
    View author publications

    Search author on:PubMed Google Scholar

  15. Lingchi Shi
    View author publications

    Search author on:PubMed Google Scholar

  16. Wenjie Meng
    View author publications

    Search author on:PubMed Google Scholar

  17. Chuanying Xi
    View author publications

    Search author on:PubMed Google Scholar

  18. Li Pi
    View author publications

    Search author on:PubMed Google Scholar

  19. Qingyou Lu
    View author publications

    Search author on:PubMed Google Scholar

  20. Jun Okamoto
    View author publications

    Search author on:PubMed Google Scholar

  21. Hsiao-Yu Huang
    View author publications

    Search author on:PubMed Google Scholar

  22. Di-Jing Huang
    View author publications

    Search author on:PubMed Google Scholar

  23. Haoliang Huang
    View author publications

    Search author on:PubMed Google Scholar

  24. Qisi Wang
    View author publications

    Search author on:PubMed Google Scholar

  25. Peng Gao
    View author publications

    Search author on:PubMed Google Scholar

  26. Zhuoyu Chen
    View author publications

    Search author on:PubMed Google Scholar

  27. Danfeng Li
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.Y., H.W. and J.T. contributed equally to this work. M.Y., Z.C. and D.L. conceived the research project. M.Y. and J.T. grew the samples with assistance from W.X., Z.D., B.F., L.S. and Z.P. H.W. and X.W. performed the in-situ reduction experiments. H.W., X.W., M.Y. and G.Z. performed the XRD characterizations. H.W. conducted the mutual inductance measurements, H.W. and J.T. performed the transport measurements. J.L., R.M. and P.G. conducted the STEM experiments. A.W., Z.W., M.Y. and H.H. conducted the high field measurements with the help from W.M., C.X., L.P. and Q.L. Y.W. and Q.W. conducted the RIXS measurements with the help from J.O., H.-Y.H. and D.-J.H. H.H., Q.W., P.G., Z.C. and D.L. acquired funding support. M.Y., J.T., W.X. and D.L. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Zhuoyu Chen or Danfeng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Yingying Peng, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Wang, H., Tang, J. et al. Enhanced superconductivity and mixed-dimensional behaviour in infinite-layer samarium nickelate thin films. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69650-3

Download citation

  • Received: 05 March 2025

  • Accepted: 05 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69650-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing