Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane organization of photosystem I complexes in the most abundant phototroph on Earth

Abstract

Prochlorococcus is a major contributor to primary production, and globally the most abundant photosynthetic genus of picocyanobacteria because it can adapt to highly stratified low-nutrient conditions that are characteristic of the surface ocean. Here, we examine the structural adaptations of the photosynthetic thylakoid membrane that enable different Prochlorococcus ecotypes to occupy high-light, low-light and nutrient-poor ecological niches. We used atomic force microscopy to image the different photosystem I (PSI) membrane architectures of the MED4 (high-light) Prochlorococcus ecotype grown under high-light and low-light conditions in addition to the MIT9313 (low-light) and SS120 (low-light) Prochlorococcus ecotypes grown under low-light conditions. Mass spectrometry quantified the relative abundance of PSI, photosystem II (PSII) and cytochrome b6f complexes and the various Pcb proteins in the thylakoid membrane. Atomic force microscopy topographs and structural modelling revealed a series of specialized PSI configurations, each adapted to the environmental niche occupied by a particular ecotype. MED4 PSI domains were loosely packed in the thylakoid membrane, whereas PSI in the low-light MIT9313 is organized into a tightly packed pseudo-hexagonal lattice that maximizes harvesting and trapping of light. There are approximately equal levels of PSI and PSII in MED4 and MIT9313, but nearly twofold more PSII than PSI in SS120, which also has a lower content of cytochrome b6f complexes. SS120 has a different tactic to cope with low-light levels, and SS120 thylakoids contained hundreds of closely packed Pcb–PSI supercomplexes that economize on the extra iron and nitrogen required to assemble PSI-only domains. Thus, the abundance and widespread distribution of Prochlorococcus reflect the strategies that various ecotypes employ for adapting to limitations in light and nutrient levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AFM of PSI in thylakoid membrane patches from LL-grown MED4.
Fig. 2: AFM of PSI in MED4 thylakoid membrane patches grown under HL.
Fig. 3: AFM of PSI in thylakoid membrane patches from MIT9313.
Fig. 4: AFM imaging of clustered Pcb–PSI supercomplexes in thylakoid membrane patches from SS120.
Fig. 5: Medium resolution AFM topograph of a large membrane patch from the SS120 ecotype.
Fig. 6: Structural models for the PSI trimer domains from the Prochlorococcus ecotypes MIT9313, MED4 and SS120 grown under LL.
Fig. 7: Comparison of the relative levels of PSI, PSII, cytochrome b6f, ATP synthase and Pcb proteins in Prochlorococcus ecotypes MED4, MIT9313 and SS120.

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (http://proteomecentral.proteomexchange.org) with the data set identifier PXD013506. All other data can be obtained from the corresponding author upon request. The following figures have associated raw data: Fig. 7, Supplementary Figs. 25.

References

  1. Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).

    Article  CAS  Google Scholar 

  2. Huston, M. A. & Wolverton, S. The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79, 343–377 (2009).

    Article  Google Scholar 

  3. Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Annu. Rev. Mar. Sci. 2, 305–331 (2010).

    Article  Google Scholar 

  4. Goericke, R. & Repeta, D. J. The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine procaryote. Limnol. Oceanogr. 37, 425–433 (1992).

    Article  CAS  Google Scholar 

  5. Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106–127 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Partensky, F., Hoepffner, N., Li, W. & Ulloa, O. Photoacclimation of Prochlorococcus sp. (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea. Plant Physiol. 101, 285–296 (1993).

    Article  CAS  Google Scholar 

  7. Moore, L. R., Goericke, R. & Chisholm, S. W. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116, 259–275 (1995).

    Article  Google Scholar 

  8. Moore, L. R., Goericke, R. & Chisholm, S. W. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467 (1998).

    Article  CAS  Google Scholar 

  9. Ferris, M. J. & Palenik, B. Niche adaptation in ocean cyanobacteria. Nature 396, 226–228 (1998).

    Article  CAS  Google Scholar 

  10. Urbach, E., Scanlan, D. J., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J. Mol. Evol. 46, 188–201 (1998).

    Article  CAS  Google Scholar 

  11. West, N. J. & Scanlan, D. J. Niche-partitioning of Prochlorococcus populations in a stratified water column in the Eastern North Atlantic Ocean. Appl. Environ. Microbiol. 65, 2585–2591 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68, 1180–1191 (2002).

    Article  CAS  Google Scholar 

  13. Zwirglmaier, K. et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10, 147–161 (2008).

    PubMed  Google Scholar 

  14. Martiny, A. C., Tai, A. P. K., Veneziano, D., Primeau, F. & Chisholm, S. W. Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ. Microbiol. 11, 823–832 (2009).

    Article  Google Scholar 

  15. Malmstrom, R. R. et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. ISME J. 4, 1252 (2010).

    Article  Google Scholar 

  16. Biller, S. J., Berube, P. M., Lindell, D. & Chisholm, S. W. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13, 13 (2015).

    Article  CAS  Google Scholar 

  17. Moore, L. R. & Chisholm, S. W. Photophysiology of the marine cyanobacterium Prochlorococcus: ecotypic differences among cultured isolates. Limnol. Oceanogr. 44, 628–638 (1999).

    Article  Google Scholar 

  18. J. T. O. Kirk in Light and Photosynthesis in Aquatic Ecosystems Ch. 6 (Cambridge University Press, 1994).

  19. Palenik, B. P. & Haselkorn, R. Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355, 265–267 (1992).

    Article  CAS  Google Scholar 

  20. Urbach, E., Robertson, D. L. & Chisholm, S. W. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355, 267 (1992).

    Article  CAS  Google Scholar 

  21. Scanlan, D. J. & West, N. J. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol. Ecol. 40, 1–12 (2002).

    Article  CAS  Google Scholar 

  22. Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).

    Article  CAS  Google Scholar 

  23. La Roche, J. et al. Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc. Natl Acad. Sci. USA 93, 15244–15248 (1996).

    Article  Google Scholar 

  24. Chen, M. & Bibby, T. S. Photosynthetic apparatus of antenna-reaction centres supercomplexes in oxyphotobacteria: insight through significance of Pcb/IsiA proteins. Photosynth. Res. 86, 165–173 (2005).

    Article  CAS  Google Scholar 

  25. Bibby, T. S., Nield, J., Partensky, F. & Barber, J. Oxyphotobacteria: antenna ring around photosystem I. Nature 413, 590 (2001a).

    Article  CAS  Google Scholar 

  26. Bibby, T. S., Mary, I., Nield, J., Partensky, F. & Barber, J. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424, 1051 (2003).

    Article  CAS  Google Scholar 

  27. Bibby, T. S., Nield, J. & Barber, J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412, 743 (2001b).

    Article  CAS  Google Scholar 

  28. Boekema, E. J. et al. A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria. Nature 412, 745 (2001).

    Article  CAS  Google Scholar 

  29. Ting, C. S., Hsieh, C., Sundararaman, S., Mannella, C. & Marko, M. Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J. Bacteriol. 189, 4485–4493 (2007).

    Article  CAS  Google Scholar 

  30. Kirchhoff, H., Lenhert, S., Büchel, C., Chi, L. & Nield, J. Probing the organization of photosystem II in photosynthetic membranes by atomic force microscopy. Biochemistry 47, 431–440 (2008).

    Article  CAS  Google Scholar 

  31. Sznee, K. et al. Jumping mode atomic force microscopy on grana membranes from spinach. J. Biol. Chem. 286, 39164–39171 (2011).

    Article  CAS  Google Scholar 

  32. Johnson, M. P., Vasilev, C., Olsen, J. D. & Hunter, C. N. Nanodomains of cytochrome b6f and photosystem II complexes in spinach grana thylakoid membranes. Plant Cell 26, 3051–3061 (2014).

    Article  CAS  Google Scholar 

  33. Onoa, B. et al. Atomic force microscopy of photosystem II and its unit cell clustering quantitatively delineate the mesoscale variability in Arabidopsis thylakoids. PloS ONE 9, e101470 (2014).

    Article  Google Scholar 

  34. Phuthong, W. et al. The use of contact mode atomic force microscopy in aqueous medium for structural analysis of spinach photosynthetic complexes. Plant Physiol. 169, 1318–1332 (2015).

    Article  Google Scholar 

  35. Tietz, S. et al. Functional implications of photosystem II crystal formation in photosynthetic membranes. J. Biol. Chem. 290, 14091–14106 (2015).

    Article  CAS  Google Scholar 

  36. Wood, W. H. et al. Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nat. Plants 4, 116 (2018).

    Article  CAS  Google Scholar 

  37. Liu, L. N. & Scheuring, S. Investigation of photosynthetic membrane structure using atomic force microscopy. Trends Plant Sci. 18, 277–286 (2013).

    Article  CAS  Google Scholar 

  38. Kumar, S. et al. Direct imaging of protein organisation in an intact bacterial organelle using high-resolution atomic force microscopy. ACS Nano 11, 126–133 (2017).

    Article  CAS  Google Scholar 

  39. MacGregor-Chatwin, C. et al. Lateral segregation of photosystem I in cyanobacterial thylakoids. Plant Cell 29, 1119–1136 (2017).

    Article  CAS  Google Scholar 

  40. Casella, S. et al. Dissecting the native architecture and dynamics of cyanobacterial photosynthetic machinery. Mol. Plant 10, 1434–1448 (2017).

    Article  CAS  Google Scholar 

  41. Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909 (2001).

    Article  CAS  Google Scholar 

  42. Malavath, T., Caspy, I., Netzer-El, S. Y., Klaiman, D. & Nelson, N. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta Bioenerg. 1859, 645–654 (2018).

    Article  CAS  Google Scholar 

  43. Kubota-Kawai, H. et al. X-ray structure of an asymmetrical trimeric ferredoxin–photosystem I complex. Nat. Plants 4, 218–224 (2018).

    Article  CAS  Google Scholar 

  44. Umena, Y., Kawakami, K., Shen, J. R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55 (2011).

    Article  CAS  Google Scholar 

  45. Waldbauer, J. R., Rodrigue, S., Coleman, M. L. & Chisholm, S. W. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle. PloS ONE 7, e43432 (2012).

    Article  CAS  Google Scholar 

  46. Domínguez-Martín, M. A. et al. Quantitative proteomics shows extensive remodeling induced by nitrogen limitation in Prochlorococcus marinus SS120. mSystems 2, e00008–e00017 (2017).

    Article  Google Scholar 

  47. Jeffrey, S. T. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).

    Article  CAS  Google Scholar 

  48. Biggins, J. & Bruce, D. Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth. Res. 20, 1–34 (1989).

    Article  CAS  Google Scholar 

  49. Andersson, B. & Anderson, J. M. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta Bioenerg. 593, 427–440 (1980).

    Article  CAS  Google Scholar 

  50. Engel, B. D. et al. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4, e04889 (2015).

    Article  Google Scholar 

  51. Rippka, R. et al. Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria). Int. J. Syst. Evolut. Microbiol. 50, 1833–1847 (2000).

    Article  CAS  Google Scholar 

  52. Bonisteel, E. M. et al. Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PloS ONE 13, e0209115 (2018).

    Article  Google Scholar 

  53. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).

    Article  Google Scholar 

  54. Mathematica v.11.3 (Wolfram Research, Inc., 2018).

  55. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  56. Sener, M. K. et al. Excitation migration in trimeric cyanobacterial photosystem I. J. Chem. Phys. 120, 11183–11195 (2004).

    Article  CAS  Google Scholar 

  57. Hitchcock, A. et al. Biosynthesis of chlorophyll a in a purple bacterial phototroph and assembly into a plant chlorophyll–protein complex. ACS Synth. Biol. 5, 948–954 (2016).

    Article  CAS  Google Scholar 

  58. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  59. The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

  60. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  Google Scholar 

  61. Fabre, B. et al. Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry. EuPA Open Proteom. 4, 82–86 (2014).

    Article  CAS  Google Scholar 

  62. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  Google Scholar 

  63. Li, L. et al. Proteome dynamics reveals pro-inflammatory remodeling of plasma proteome in a mouse model of NAFLD. J. Proteome Res. 15, 3388–3404 (2016).

    Article  CAS  Google Scholar 

  64. García-Plazaola, J. I. & Becerril, J. M. A rapid high-performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochem. Anal. 10, 307–313 (1999).

    Article  Google Scholar 

  65. Kalb, V. F. Jr & Bernlohr, R. W. A new spectrophotometric assay for protein in cell extracts. Anal. Biochem. 82, 362–371 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Advanced Award 338895 from the European Research Council which funded C.M.-C., P.J.J., J.W.C. and P.Q. and provided partial support for C.N.H. The authors C.N.H. and A.H. also gratefully acknowledge financial support from the Biotechnology and Biological Sciences Research Council (BBSRC UK), award number BB/M000265/1. C.N.H., M.S. and Z.L.-S. were supported by the Photosynthetic Antenna Research Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC 0001035. M.S. and Z.L.-S. were also supported by the National Science Foundation (grant no. MCB1616590) and the National Institutes of Health (grant no. 9P41GM104601). D.J.S. acknowledges funding from NERC (grant no. NE/N003241/1) and The Leverhulme Trust (grant no. RPG-2014-354). M.J.D. acknowledges support from the BBSRC UK (grant no. BB/M012166/1). M.P.J. would like to acknowledge BBSRC grant no. BB/P002005/1 and the Grantham Centres for Sustainable Futures, University of Sheffield, for G.E.M.’s studentship.

Author information

Authors and Affiliations

Authors

Contributions

C.M.-C., D.J.S. and C.N.H. designed the research. C.M.-C., P.J.J., M.S., J.W.C., A.H., P.Q., M.J.D., G.E.M. and D.J.S. performed the research. C.M.-C., M.S., M.P.J., Z.L.-S. and C.N.H. wrote the paper.

Corresponding author

Correspondence to C. N. Hunter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Plants thanks Douglas Campbell and other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, and Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacGregor-Chatwin, C., Jackson, P.J., Sener, M. et al. Membrane organization of photosystem I complexes in the most abundant phototroph on Earth. Nat. Plants 5, 879–889 (2019). https://doi.org/10.1038/s41477-019-0475-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-019-0475-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene