Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Species-independent analytical tools for next-generation agriculture

Abstract

Innovative approaches are urgently required to alleviate the growing pressure on agriculture to meet the rising demand for food. A key challenge for plant biology is to bridge the notable knowledge gap between our detailed understanding of model plants grown under laboratory conditions and the agriculturally important crops cultivated in fields or production facilities. This Perspective highlights the recent development of new analytical tools that are rapid and non-destructive and provide tissue-, cell- or organelle-specific information on living plants in real time, with the potential to extend across multiple species in field applications. We evaluate the utility of engineered plant nanosensors and portable Raman spectroscopy to detect biotic and abiotic stresses, monitor plant hormonal signalling as well as characterize the soil, phytobiome and crop health in a non- or minimally invasive manner. We propose leveraging these tools to bridge the aforementioned fundamental gap with new synthesis and integration of expertise from plant biology, engineering and data science. Lastly, we assess the economic potential and discuss implementation strategies that will ensure the acceptance and successful integration of these modern tools in future farming practices in traditional as well as urban agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: First-generation examples of optical nanosensors and Raman technology for non-destructive monitoring of plant stresses.
Fig. 2: Application of species-independent diagnostic tools in next-generation agriculture.

Similar content being viewed by others

References

  1. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).

    Article  Google Scholar 

  3. King, T. et al. Food safety for food security: relationship between global megatrends and developments in food safety. Trends Food Sci. Tech. 68, 160–175 (2017).

    Article  CAS  Google Scholar 

  4. Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).

    Article  PubMed  Google Scholar 

  5. Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    Article  PubMed  Google Scholar 

  7. van Esse, H. P., Reuber, T. L. & van der Does, D. Genetic modification to improve disease resistance in crops. New Phytol. 225, 70–86 (2020).

    Article  PubMed  Google Scholar 

  8. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article  Google Scholar 

  10. van Meijl, H. et al. Comparing impacts of climate change and mitigation on global agriculture by 2050. Environ. Res. Lett. 13, 064021 (2018).

    Article  CAS  Google Scholar 

  11. Wiebe, K., Robinson, S. & Cattaneo, A. in Sustainable Food and Agriculture 55–74 (Elsevier, 2019).

  12. Walter, A., Finger, R., Huber, R. & Buchmann, N. Smart farming is key to developing sustainable agriculture. Proc. Natl Acad. Sci. USA 114, 6148–6150 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, S. et al. Modulating plant growth–metabolism coordination for sustainable agriculture. Nature 560, 595–600 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477–485 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Specht, K. et al. Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings. Agric. Human Values 31, 33–51 (2014).

    Article  Google Scholar 

  16. Benke, K. & Tomkins, B. Future food-production systems: vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13, 13–26 (2017).

    Google Scholar 

  17. Torero Cullen, M. A battle plan for ensuring global food supplies during the COVID-19 crisis. FAO http://www.fao.org/news/story/en/item/1268059/icode/ (2020).

  18. Berens, M. L. et al. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc. Natl Acad. Sci. USA 116, 2364–2373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Riedlmeier, M. et al. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell 29, 1440–1459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu, J. K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rhee, S. Y. et al. The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 31, 224–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Bevan, M. & Walsh, S. The Arabidopsis genome: a foundation for plant research. Genome Res. 15, 1632–1642 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Z. & Sillanpää, M. J. Dynamic quantitative trait locus analysis of plant phenomic data. Trends Plant Sci. 20, 822–833 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Walia, A., Waadt, R. & Jones, A. M. Genetically encoded biosensors in plants: pathways to discovery. Annu. Rev. Plant Biol. 69, 497–524 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Borrill, P. Blurring the boundaries between cereal crops and model plants. New Phytol. 9, 16229 (2019).

    Google Scholar 

  26. Carpentler, S. C. et al. Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom. Rev. 27, 354–377 (2008).

    Article  CAS  Google Scholar 

  27. Long, S. P., Marshall-Colon, A. & Zhu, X. G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Jackson, S. A. Rice: the first crop genome. Rice 9, 1–3 (2016).

    Article  Google Scholar 

  29. Yang, N. et al. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 51, 1052–1059 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Sant’Ana, D. V. P. & Lefsrud, M. Tomato proteomics: tomato as a model for crop proteomics. Scientia Horticulturae 239, 224–233 (2018).

    Article  CAS  Google Scholar 

  31. Unamba, C. I. N., Nag, A. & Sharma, R. K. Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front. Plant Sci. 6, 1074 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Richards, C. L. et al. Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol. Lett. 20, 1576–1590 (2017).

    Article  PubMed  Google Scholar 

  33. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. & Fernie, A. R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1, 387–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Fernie, A. R., Trethewey, R. N., Krotzky, A. J. & Willmitzer, L. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Lytovchenko, A. et al. Application of GC-MS for the detection of lipophilic compounds in diverse plant tissues. Plant Methods 5, 4 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nagano, A. J. et al. Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell 151, 1358–1369 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Shakoor, N., Lee, S. & Mockler, T. C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 38, 184–192 (2017).

    Article  PubMed  Google Scholar 

  38. Araus, J. L. & Cairns, J. E. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19, 52–61 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Kirchgessner, N. et al. The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Funct. Plant Biol. 44, 154 (2017).

    Article  Google Scholar 

  40. Pieruschka, R. & Schurr, U. Plant phenotyping: past, present, and future. Plant Phenomics 2019, 7507131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang, G. et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front. Plant Sci. 8, 1111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ampatzidis, Y. & Partel, V. UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence. Remote Sens. 11, 410 (2019).

    Article  Google Scholar 

  43. Li, L., Zhang, Q. & Huang, D. A review of imaging techniques for plant phenotyping. Sensors 14, 20078–20111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chawade, A. et al. High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy 9, 258 (2019).

    Article  CAS  Google Scholar 

  45. Zhao, C. et al. Crop phenomics: current status and perspectives. Front. Plant Sci. 10, 714 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bai, G., Ge, Y., Hussain, W., Baenziger, P. S. & Graef, G. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comput. Electron. Agric. 128, 181–192 (2016).

    Article  Google Scholar 

  47. Cohen, Y., Alchanatis, V., Meron, M., Saranga, Y. & Tsipris, J. Estimation of leaf water potential by thermal imagery and spatial analysis. J. Exp. Bot. 56, 1843–1852 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Valle, B. et al. PYM: a new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments. Plant Methods 13, 1–17 (2017).

    Article  Google Scholar 

  49. Gerhards, M., Schlerf, M., Mallick, K. & Udelhoven, T. Challenges and future perspectives of multi-/hyperspectral thermal infrared remote sensing for crop water-stress detection: a review. Remote Sens. 11, 1240 (2019).

    Article  Google Scholar 

  50. Yang, W. et al. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol. Plant 13, 187–214 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Fukatsu, T., Watanabe, T., Hu, H., Yoichi, H. & Hirafuji, M. Field monitoring support system for the occurrence of Leptocorisa chinensis Dallas (Hemiptera: Alydidae) using synthetic attractants, Field Servers, and image analysis. Comput. Electron. Agric. 80, 8–16 (2012).

    Article  Google Scholar 

  52. Sadeghi-Tehran, P., Sabermanesh, K., Virlet, N. & Hawkesford, M. J. Automated method to determine two critical growth stages of wheat: heading and flowering. Front. Plant Sci. 8, 252 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Duan, L. et al. Novel digital features discriminate between drought resistant and drought sensitive rice under controlled and field conditions. Front. Plant Sci. 9, 492 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jahnke, S. et al. phenoSeeder - a robot system for automated handling and phenotyping of individual seeds. Plant Physiol. 172, 1358–1370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mahlein, A. K. Plant disease detection by imaging sensors – parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 100, 241–254 (2016).

    Article  PubMed  Google Scholar 

  56. Alves Varella, C. A., Gleriani, J. M. & dos Santos, R. M. in Sugarcane: Agricultural Production, Bioenergy and Ethanol 185–203 (Elsevier Inc., 2015).

  57. Tantalaki, N., Souravlas, S. & Roumeliotis, M. Data-driven decision making in precision agriculture: the rise of big data in agricultural systems. J. Agric. Food Inf. 20, 344–380 (2019).

    Article  Google Scholar 

  58. Baumgart-Getz, A., Prokopy, L. S. & Floress, K. Why farmers adopt best management practice in the United States: a meta-analysis of the adoption literature. J. Environ. Manage. 96, 17–25 (2012).

    Article  PubMed  Google Scholar 

  59. Fujita, M. et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9, 436–442 (2006).

    Article  PubMed  Google Scholar 

  60. Perilla-Henao, L. M. & Casteel, C. L. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front. Plant Sci. 7, 1163 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bendix, C. & Lewis, J. D. The enemy within: phloem-limited pathogens. Mol. Plant Pathol. 19, 238–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Choi, W.-G. et al. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J. 90, 698–707 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gilroy, S. et al. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 171, 1606–1615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shan, X., Yan, J. & Xie, D. Comparison of phytohormone signaling mechanisms. Curr. Opin. Plant Biol. 15, 84–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Zhao, Y., Qi, Z. & Berkowitz, G. A. Teaching an old hormone new tricks: cytosolic Ca2+ elevation involvement in plant brassinosteroid signal transduction cascades. Plant Physiol. 163, 555–565 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seyfferth, C. & Tsuda, K. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Front. Plant Sci. 5, 697 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mohanta, T. K., Kumar, P. & Bae, H. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants. BMC Plant Biol. 17, 38 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Huang, H., Ullah, F., Zhou, D. X., Yi, M. & Zhao, Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 10, 800 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang, C., Liu, Y., Li, S. S. & Han, G. Z. Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiol. 167, 872–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Blázquez, M. A., Nelson, D. C. & Weijers, D. Evolution of plant hormone response pathways. Annu. Rev. Plant Biol. 71, 327–353 (2020).

    Article  PubMed  CAS  Google Scholar 

  71. Lew, T. T. S., Koman, V. B., Gordiichuk, P., Park, M. & Strano, M. S. The emergence of plant nanobionics and living plants as technology. Adv. Mater. Technol. 5, 1900657 (2020).

    Article  CAS  Google Scholar 

  72. Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Kwak, S. Y. et al. Nanosensor technology applied to living plant systems. Annu. Rev. Anal. Chem. 10, 113–140 (2017).

    Article  Google Scholar 

  74. Zhu, C., Yang, G., Li, H., Du, D. & Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87, 230–249 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Kwak, S. Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Lew, T. T. S. et al. Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors. Nat. Plants 6, 404–415 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Wong, M. H. et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat. Mater. 16, 264–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Zrazhevskiy, P., Sena, M. & Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 39, 4326–4354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, J., Wu, H., Santana, I., Fahlgren, M. & Giraldo, J. P. Standoff optical glucose sensing in photosynthetic organisms by a quantum dot fluorescent probe. ACS Appl. Mater. Interfaces 10, 28279–28289 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Li, W. et al. Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS Appl. Mater. Interfaces 8, 19939–19945 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Yao, Z., Lai, Z., Chen, C., Xiao, S. & Yang, P. Full-color emissive carbon-dots targeting cell walls of onion for in situ imaging of heavy metal pollution. Analyst 144, 3685 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Hasegawa, Y., Murohashi, F. & Uchida, H. Plant physiological activity sensing by bioelectric potential measurement. Procedia Engineer. 168, 630–633 (2016).

    Article  CAS  Google Scholar 

  83. Ochiai, T., Tago, S., Hayashi, M. & Fujishima, A. Highly sensitive measurement of bio-electric potentials by boron-doped diamond (BDD) electrodes for plant monitoring. Sensors 15, 26921–26928 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tenenboim, H. & Brotman, Y. Omic relief for the biotically stressed: metabolomics of plant biotic interactions. Trends Plant Sci. 21, 781–791 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Kushalappa, A. C. & Gunnaiah, R. Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci. 18, 522–531 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Jorge, T. F. et al. Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom. Rev. 35, 620–649 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Obata, T. & Fernie, A. R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 69, 3225–3243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ward, J. L. et al. The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Plant J. 63, 443–457 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Gunnaiah, R., Kushalappa, A. C., Duggavathi, R., Fox, S. & Somers, D. J. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat qtl (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 7, e40695 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, H. K., Choi, Y. H. & Verpoorte, R. NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol. 29, 267–275 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Cevallos-Cevallos, J. M., Futch, D. B., Shilts, T., Folimonova, S. Y. & Reyes-De-Corcuera, J. I. GC-MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus huanglongbing. Plant Physiol. Biochem. 53, 69–76 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Altangerel, N. et al. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl Acad. Sci. USA 114, 3393–3396 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yeturu, S. et al. Handheld Raman spectroscopy for the early detection of plant diseases: Abutilon mosaic virus infecting Abutilon sp. Anal. Methods 8, 3450–3457 (2016).

    Article  CAS  Google Scholar 

  94. Hao Huang, C. et al. Early diagnosis and management of nitrogen deficiency in plants utilizing Raman spectroscopy. Front. Plant Sci. 11, 663 (2020).

    Article  Google Scholar 

  95. Farber, C., Mahnke, M., Sanchez, L. & Kurouski, D. Advanced spectroscopic techniques for plant disease diagnostics. A review. Trends Analyt. Chem. 118, 43–49 (2019).

    Article  CAS  Google Scholar 

  96. Angel, S. M., Gomer, N. R., Sharma, S. K. & McKay, C. Remote Raman spectroscopy for planetary exploration: a review. Appl. Spectrosc. 66, 137–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Acosta-Maeda, T. E. et al. Remote Raman measurements of minerals, organics, and inorganics at 430 m range. Appl. Opt. 55, 10283 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Dudareva, N., Negre, F., Nagegowda, D. A. & Orlova, I. Plant volatiles: recent advances and future perspectives. CRC. Crit. Rev. Plant Sci. 25, 417–440 (2006).

    Article  CAS  Google Scholar 

  99. Vivaldo, G., Masi, E., Taiti, C., Caldarelli, G. & Mancuso, S. The network of plants volatile organic compounds. Sci. Rep. 7, 11050 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Martinelli, F. et al. Advanced methods of plant disease detection. A review. Agro. Sustain. Dev. 35, 1–25 (2015).

    Article  Google Scholar 

  101. Tholl, D. et al. Practical approaches to plant volatile analysis. Plant J. 45, 540–560 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Li, Z. et al. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 5, 856–866 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Fong, D., Luo, S. X., Andre, R. S. & Swager, T. M. Trace ethylene sensing via wacker oxidation. ACS Cent. Sci. 6, 507–512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cui, S., Ling, P., Zhu, H. & Keener, H. Plant pest detection using an artificial nose system: a review. Sensors 18, 378 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  105. Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 667–697 (2016).

    Google Scholar 

  106. Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Singh, A. K., Ganapathysubramanian, B., Sarkar, S. & Singh, A. Deep learning for plant stress phenotyping: trends and future perspectives. Trends Plant Sci. 23, 883–898 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Fichman, Y., Miller, G. & Mittler, R. Whole-plant live imaging of reactive oxygen species. Mol. Plant 12, 1203–1210 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Dhondt, S., Wuyts, N. & Inzé, D. Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci. 18, 428–439 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L. & Landry, M. P. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 36, 882–897 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, 1802086 (2018).

    Article  CAS  Google Scholar 

  113. Lew, T. T. S. et al. Nanocarriers for transgene expression in pollen as a plant biotechnology tool. ACS Mater. Lett. 2, 1057–1066 (2020).

    Article  CAS  Google Scholar 

  114. Thagun, C., Chuah, J. & Numata, K. Targeted gene delivery into various plastids mediated by clustered cell‐penetrating and chloroplast‐targeting peptides. Adv. Sci. 6, 1902064 (2019).

    Article  CAS  Google Scholar 

  115. Yoshizumi, T., Oikawa, K., Chuah, J. A., Kodama, Y. & Numata, K. Selective gene delivery for integrating exogenous DNA into plastid and mitochondrial genomes using peptide-DNA complexes. Biomacromolecules 19, 1582–1591 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Hadjidemetriou, M. & Kostarelos, K. Nanomedicine: evolution of the nanoparticle corona. Nat. Nanotechnol. 12, 288–290 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Zhdanov, V. P. Formation of a protein corona around nanoparticles. Curr. Opin. Colloid Interface Sci. 41, 95–103 (2019).

    Article  CAS  Google Scholar 

  118. Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A decade of the protein corona. ACS Nano 11, 11773–11776 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Cai, R. et al. Corona of thorns: the surface chemistry-,ediated protein corona perturbs the recognition and immune response of macrophages. ACS Appl. Mater. Interfaces 12, 1997–2008 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68, 229–245 (2018).

    Article  CAS  Google Scholar 

  121. Mohanram, S. & Kumar, P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Ann. Microbiol. 69, 307–320 (2019).

    Article  Google Scholar 

  122. Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).

    Article  PubMed  CAS  Google Scholar 

  126. Kozawa, D. et al. A fiber optic interface coupled to nanosensors: applications to protein aggregation and organic molecule guantification. ACS Nano 14, 10141–10152 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Di, W. & Clark, H. A. Optical nanosensors for: in vivo physiological chloride detection for monitoring cystic fibrosis treatment. Anal. Methods 12, 1441–1448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N. D. & Calderón, F. J. in Advances in Agronomy Vol. 126 (Academic Press Inc., 2014).

  129. Wasson, A., Bischof, L., Zwart, A. & Watt, M. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field. J. Exp. Bot. 67, 1033–1043 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tracy, S. R. et al. Crop Improvement from phenotyping roots: highlights reveal expanding opportunities. Trends Plant Sci. 25, 105–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Gu, K. et al. Crosskingdom growth benefits of fungus-derived phytohormones in Choy Sum. Preprint at bioRxiv https://doi.org/10.1101/2020.02.04.933770 (2020).

  132. Polisetti, S., Bible, A. N., Morrell-Falvey, J. L. & Bohn, P. W. Raman chemical imaging of the rhizosphere bacterium Pantoea sp. YR343 and its co-culture with Arabidopsis thaliana. Analyst 141, 2175–2182 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Singer, E., Wagner, M. & Woyke, T. Capturing the genetic makeup of the active microbiome in situ. ISME J. 11, 1949–1963 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gehan, M. A. et al. PlantCV v2: image analysis software for high-throughput plant phenotyping. PeerJ 5, e4088 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Rodriguez, P. A. et al. Systems biology of plant–microbiome interactions. Mol. Plant 12, 804–821 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).

    Article  PubMed  Google Scholar 

  137. Ballaré, C. L. & Pierik, R. The shade-avoidance syndrome: multiple signals and ecological consequences. Plant. Cell Environ. 40, 2530–2543 (2017).

    Article  PubMed  CAS  Google Scholar 

  138. Tang, Y.-J. & Liesche, J. The molecular mechanism of shade avoidance in crops — how data from Arabidopsis can help to identify targets for increasing yield and biomass production. J. Integr. Agr. 16, 1244–1255 (2017).

    Article  CAS  Google Scholar 

  139. Wille, W., Pipper, C. B., Rosenqvist, E., Andersen, S. B. & Weiner, J. Reducing shade avoidance responses in a cereal crop. AoB Plants 9, plx039 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Casal, J. J. Shade avoidance. Arab. B. 10, e0157 (2012).

    Article  Google Scholar 

  141. Devlin, P. F., Yanovsky, M. J. & Kay, S. A. A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol. 133, 1617–1629 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rolauffs, S., Fackendahl, P., Sahm, J., Fiene, G. & Hoecker, U. Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio. Plant Physiol. 160, 2015–2027 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

    Article  Google Scholar 

  144. Pereira, A. Plant abiotic stress challenges from the changing environment. Front. Plant Sci. 7, 1123 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. Elad, Y. & Pertot, I. Climate change impacts on plant pathogens and plant diseases. J. Crop Improv. 28, 99–139 (2014).

    Article  CAS  Google Scholar 

  146. Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Biermacher, J. T., Brorsen, B. W., Epplin, F. M., Solie, J. B. & Raun, W. R. The economic potential of precision nitrogen application with wheat based on plant sensing. Agric. Econ. 40, 397–407 (2009).

    Article  Google Scholar 

  148. Polo, E. & Kruss, S. Impact of redox-active molecules on the fluorescence of polymer-wrapped carbon nanotubes. J. Phys. Chem. C 120, 3061–3070 (2016).

    Article  CAS  Google Scholar 

  149. Wang, L., Luo, W., Sun, X. & Qian, C. Changes in flavor-relevant compounds during vine ripening of tomato fruit and their relationship with ethylene production. Hortic. Environ. Biotechnol. 59, 787–804 (2018).

    Article  CAS  Google Scholar 

  150. Klee, H. J. & Giovannoni, J. J. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45, 41–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Akhatou, I. & Fernández-Recamales, Á. Nutritional and nutraceutical quality of strawberries in relation to harvest time and crop conditions. J. Agric. Food Chem. 62, 5749–5760 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Falinski, M. M. et al. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. Nat. Nanotechnol. 13, 708–714 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Hofmann, T. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416–425 (2020).

    Article  Google Scholar 

  156. Eschen, R. et al. Safeguarding global plant health: the rise of sentinels. J. Pest Sci. 92, 29–36 (2019).

    Article  Google Scholar 

  157. Kenis, M. et al. Sentinel nurseries to assess the phytosanitary risks from insect pests on importations of live plants. Sci. Rep. 8, 11217 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T. & Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Networks 172, 107148 (2020).

    Article  Google Scholar 

  159. Santesteban, L. G. et al. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 183, 49–59 (2017).

    Article  Google Scholar 

  160. Saiz-Rubio, V. & Rovira-Más, F. From smart farming towards agriculture 5.0: a review on crop data management. Agronomy 10, 207 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the funding and support from the MIT-Singapore SMART programme, specifically the Disruptive and Sustainable Technology for Agricultural Precision (DiSTAP) integrated research group, and the National Research Foundation, Singapore (NRF-CRP16-2015-04 to N.I.N). T.T.S.L. was supported on a graduate fellowship by the Agency of Science, Research and Technology, Singapore. We thank B. Skrip (Massachusetts Institute of Technology) for creating Fig. 2 in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.T.S.L., N.-H.C. and M.S.S. led the writing of this manuscript. T.T.S.L., R.S., I.-C.J., B.S.P., N.I.N., M.H.W., G.P.S., R.J.R., O.S., K.S., N.-H.C. and M.S.S. contributed to the writing of specific sections, critical reading of the manuscript and the reviewing of appropriate references.

Corresponding authors

Correspondence to Nam-Hai Chua or Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lew, T.T.S., Sarojam, R., Jang, IC. et al. Species-independent analytical tools for next-generation agriculture. Nat. Plants 6, 1408–1417 (2020). https://doi.org/10.1038/s41477-020-00808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-020-00808-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research