Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthetic maize centromeres transmit chromosomes across generations

Abstract

Centromeres are long, often repetitive regions of genomes that bind kinetochore proteins and ensure normal chromosome segregation. Engineering centromeres that function in vivo has proven to be difficult. Here we describe a tethering approach that activates functional maize centromeres at synthetic sequence arrays. A LexA-CENH3 fusion protein was used to recruit native Centromeric Histone H3 (CENH3) to long arrays of LexO repeats on a chromosome arm. Newly recruited CENH3 was sufficient to organize functional kinetochores that caused chromosome breakage, releasing chromosome fragments that were passed through meiosis and into progeny. Several fragments formed independent neochromosomes with centromeres localized over the LexO repeat arrays. The new centromeres were self-sustaining and transmitted neochromosomes to subsequent generations in the absence of the LexA-CENH3 activator. Our results demonstrate the feasibility of using synthetic centromeres for karyotype engineering applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LexA-CENH3(v1) recruits native CENH3 to ABS4.
Fig. 2: Segregation errors in LexA-CENH3(v2) ABS4 plants.
Fig. 3: Analysis of independent neochromosomes 4L.

Similar content being viewed by others

Data availability

All raw sequencing data generated in this study have been submitted to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA874319. For description of files, see Supplementary Table 2.

References

  1. Mittler, R. & Blumwald, E. Genetic engineering for modern agriculture: challenges and perspectives. Annu. Rev. Plant Biol. 61, 443–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Baltes, N. J. & Voytas, D. F. Enabling plant synthetic biology through genome engineering. Trends Biotechnol. 33, 120–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Wurtzel, E. T. et al. Revolutionizing agriculture with synthetic biology. Nat. Plants 5, 1207–1210 (2019).

    Article  PubMed  Google Scholar 

  4. Venter, J. C., Glass, J. I., Hutchison, C. A. 3rd & Vashee, S. Synthetic chromosomes, genomes, viruses, and cells. Cell 185, 2708–2724 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016).

    Article  PubMed  Google Scholar 

  6. Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dawe, R. K. Charting the path to fully synthetic plant chromosomes. Exp. Cell. Res. 390, 111951 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Boeke, J. D. et al. GENOME ENGINEERING. The Genome Project-Write. Science 353, 126–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, J. et al. Centromeres: from chromosome biology to biotechnology applications and synthetic genomes in plants. Plant Biotechnol. J. 20, 2051–2063 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allshire, R. C. & Karpen, G. H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet. 9, 923–937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harrington, J. J., Van Bokkelen, G., Mays, R. W., Gustashaw, K. & Willard, H. F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15, 345–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Gambogi, C. W., Dawicki-McKenna, J. M., Logsdon, G. A. & Black, B. E. The unique kind of human artificial chromosome: bypassing the requirement for repetitive centromere DNA. Exp. Cell. Res. 391, 111978 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gascoigne, K. E. et al. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145, 410–422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gascoigne, K. E. & Cheeseman, I. M. Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis. Chromosome Res. 21, 407–418 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barnhart, M. C. et al. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194, 229–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hori, T., Shang, W.-H., Takeuchi, K. & Fukagawa, T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200, 45–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Teo, C. H., Lermontova, I., Houben, A., Mette, M. F. & Schubert, I. De novo generation of plant centromeres at tandem repeats. Chromosoma 122, 233–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Logsdon, G. A. et al. Human artificial chromosomes that bypass centromeric DNA. Cell 178, 624–639.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palladino, J., Chavan, A., Sposato, A., Mason, T. D. & Mellone, B. G. Targeted de novo centromere formation in drosophila reveals plasticity and maintenance potential of CENP-A chromatin. Dev. Cell 52, 379–394.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mendiburo, M. J., Padeken, J., Fülöp, S., Schepers, A. & Heun, P. Drosophila CENH3 is sufficient for centromere formation. Science 334, 686–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Black, B. E. & Bassett, E. A. The histone variant CENP-A and centromere specification. Curr. Opin. Cell Biol. 20, 91–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Dunleavy, E. M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, C.-C. et al. CAL1 is the Drosophila CENP-A assembly factor. J. Cell Biol. 204, 313–329 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, H. et al. Stable integration of an engineered megabase repeat array into the maize genome. Plant J. 70, 357–365 (2012).

    Article  PubMed  Google Scholar 

  27. Liu, J. et al. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31, 368–383 (2019).

  28. Ravi, M. & Chan, S. W. L. Haploid plants produced by centromere-mediated genome elimination. Nature 464, 615–618 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Zhong, C. X. et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14, 2825–2836 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Topp, C. N. et al. Identification of a maize neocentromere in an oat-maize addition line. Cytogenet. Genome Res. 124, 228–238 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, N., Gent, J. I. & Dawe, R. K. Haploid induction by a maize cenh3 null mutant. Sci. Adv. 7, eabe2299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mcclintock, B. The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases. MO Agric. Exp. Station Res. Bull. 290, 1–48 (1938).

    Google Scholar 

  33. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bajer, A. Observations on dicentrics in living cells. Chromosoma 14, 18–30 (1963).

    Article  Google Scholar 

  35. Zheng, Y. Z., Roseman, R. R. & Carlson, W. R. Time course study of the chromosome-type breakage–fusion–bridge cycle in maize. Genetics 153, 1435–1444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saccardo, F. Behaviour of dicentric chromosomes in peas. Caryologia 24, 71–84 (1971).

    Article  Google Scholar 

  37. Coe, E. H. Location and effects of c2. Maize Genet. Coop. N. Lett. 36, 60 (1958).

    Google Scholar 

  38. Sears, E. R. & Câmara, A. A transmissible dicentric chromosome. Genetics 37, 125–135 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cools, T. & De Veylder, L. DNA stress checkpoint control and plant development. Curr. Opin. Plant Biol. 12, 23–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N. & Grelon, M. The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66, 297–327 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Page, B. T., Wanous, M. K. & Birchler, J. A. Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere. Genetics 159, 291–302 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nelms, B. & Walbot, V. Gametophyte genome activation occurs at pollen mitosis I in maize. Science 375, 424–429 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Einset, J. Chromosome length in relation to transmission frequency of maize trisomes. Genetics 28, 349–364 (1943).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, Y., Segal, G., Wang, Q. & Dooner, H. K. Gene tagging with engineered Ds elements in maize. Methods Mol. Biol. 1057, 83–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K. & Henikoff, S. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264–3283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marimuthu, M. P. A. et al. Epigenetically mismatched parental centromeres trigger genome elimination in hybrids. Sci. Adv. 7, eabk1151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ishii, T., Karimi-Ashtiyani, R. & Houben, A. Haploidization via chromosome elimination: means and mechanisms. Annu. Rev. Plant Biol. 67, 421–438 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, N. & Dawe, R. K. Centromere size and its relationship to haploid formation in plants. Mol. Plant 11, 398–406 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Lv, J. et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 38, 1397–1401 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Ravi, M. et al. A haploid genetics toolbox for Arabidopsis thaliana. Nat. Commun. 5, 5334 (2014).

  51. Lo, A. W. et al. A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J. 20, 2087–2096 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, Y. et al. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize. Proc. Natl Acad. Sci. USA 112, E1263–E1271 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655–662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, H. & Dawe, R. K. Total centromere size and genome size are strongly correlated in ten grass species. Chromosome Res. 20, 403–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Plačková, K., Bureš, P. & Zedek, F. Centromere size scales with genome size across eukaryotes. Sci. Rep. 11, 19811 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schwartz, C. et al. CRISPR–Cas9-mediated 75.5-Mb inversion in maize. Nat. Plants 6, 1427–1431 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Rönspies, M., Dorn, A., Schindele, P. & Puchta, H. CRISPR–Cas-mediated chromosome engineering for crop improvement and synthetic biology. Nat. Plants 7, 566–573 (2021).

    Article  PubMed  Google Scholar 

  58. Schmidt, C. et al. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat. Commun. 11, 4418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taylor, M. G., Vasil, V. & Vasil, I. K. Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize uhiquitin-based plasmid pAHC25. Plant Cell Rep. 12, 491–495 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coe, E. H. Genetic maps 2007. Maize Genet. Coop. N. Lett. 82, 87–102 (2008).

    Google Scholar 

  63. Zuo, J., Niu, Q.-W. & Chua, N.-H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Fogh, R. H. et al. Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spectroscopy. EMBO J. 13, 3936–3944 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Padidam, M., Gore, M., Lu, D. L. & Smirnova, O. Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgenic Res. 12, 101–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Gent, J. I., Wang, N. & Dawe, R. K. Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives. Genome Biol. 18, 121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

  69. Liu, J. et al. Gapless assembly of maize chromosomes using long-read technologies. Genome Biol. 21, 121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, Y.-J., Chang, P., Lu, J.-H., Chen, P.-Y. & Wang, C.-J. R. Assessing chromatin accessibility in maize using ATAC-seq. Preprint at bioRxiv https://doi.org/10.1101/526079 (2019).

  71. Yu, H. G., Hiatt, E. N., Chan, A., Sweeney, M. & Dawe, R. K. Neocentromere-mediated chromosome movement in maize. J. Cell Biol. 139, 831–840 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kato, A., Lamb, J. C. & Birchler, J. A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl Acad. Sci. USA 101, 13554–13559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Maize Genetics Cooperation Stock Center for providing maize stocks and M. Tindall Smith for genotyping stocks. This study was supported in part by resources and technical expertise from the Georgia Advanced Computing Resource Center, as well as grants from the National Science Foundation (IOS-1444514 and IOS-2040218).

Author information

Authors and Affiliations

Authors

Contributions

R.K.D., J.I.G. and H.Z. conceived and designed experiments. R.K.D., J.I.G., Y.Z., H.Z., F.-F.F., K.W.S., D.W.K., N.W., J.L. and R.D.P. performed experiments. R.K.D., J.I.G., Y.Z., F.-F.F., K.W.S., N.W., J.L. and R.D.P. analysed the data. R.K.D. and J.I.G. wrote the manuscript.

Corresponding author

Correspondence to R. Kelly Dawe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Anne Britt, Ian Henderson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Confirmation that LexA-CENH3(v1) recruits native CENH3 by a ChIP-seq assay.

The data show CENH3 ChIP enrichment relative to input, measured by Illumina sequencing. Each ChIP is from an individual plant that was heterozygous for ABS4 and the LexA-CENH3(v1) transgene. CentC is a native centromere repeat whereas knob180 and TR-1 are non-centromeric repeats. The Y-axis indicates the numbers of reads in the ChIP sample divided by numbers in input and normalized by the total number of reads.

Extended Data Fig. 2 Complementation of the cenh3 null by LexA-CENH3 transgenes.

A minus sign indicates the lack of LexA-CENH3 transgene. A plus sign indicates the wild-type CENH3 allele. Plants heterozygous for either LexA-CENH3(v1) or LexA-CENH3(v2) were crossed to lines carrying the cenh3 null and heterozygotes self-crossed. The genotypes of progeny are shown to the right. Note that of 67 plants carrying LexA-CENH3(v1), none were homozygous for cenh3, indicating that the transgene cannot complement the null. In contrast, of 20 plants carrying LexA-CENH3(v2), four were homozygous for cenh3. One of these four plants, which proved to be homozygous for LexA-CENH3(v2), looked normal (see Extended Data Fig. 3).

Extended Data Fig. 3 Demonstration that LexA-CENH3(v2) is sufficient for cell division and plant growth.

a). A plant homozygous for the LexA-CENH3(v2) transgene and homozygous for a cenh3 null mutant. The plant was self-crossed to reveal a full ear (below), indicating that the transgene was homozygous (one quarter of the seeds would have been dead if the plant was heterozygous for LexA-CENH3(v2)). The second ear of this plant was used for the third lane of the protein blot in B. b) Protein blot analysis of CENH3 in plants of different genotypes. A minus sign indicates the lack of LexA-CENH3(v2) transgene. A plus sign indicates wild-type CENH3 allele. Native maize CENH3 is 17 kDa and recognized by a maize-specific antibody. The oat CENH3 antibody recognizes the LexA-CENH3 fusion protein only. The predicted ~27 kDa LexA-CENH3 band is observed along with a smaller band of unknown cause/origin. Importantly, native CENH3 was not detectable in the LexA-CENH3(v2)/LexA-CENH3(v2), cenh3/cenh3 null plant (third lane). The lower panel (Coomassie) shows that the amounts of protein loaded into each lane were similar. These staining patterns were observed in two different protein blots using the same protein samples.

Extended Data Fig. 4 Segregation errors in LexA-CENH3(v2) ABS4 plants.

a) Mitotic errors. Root tips from five sectored seeds were processed for FISH and the number of Cent4 and ABS spots counted in interphase nuclei. Two Cent4 (red) spots were observed in all nuclei. ABS (green), which is on one copy of chromosome 4, showed high frequencies of mis-segregation consistent with the model in Fig. 2a. The images shown above are examples. The two cells in the right image are daughter cells of a single division, where the left cell has no ABS and the right cell as two ABS loci. b) Meiotic errors. Three plants heterozygous for LexA-CENH3(v2) and ABS4 were analyzed at meiosis (siblings from a single ear). Only cells in mid-anaphase I, identified by the short distance between segregating chromosomes masses, were tallied. Figures with no recombination between the centromere and ABS4 were identified by having ABS dots only on one side (first column). Cases where recombination occurred and ABS4 loci segregated freely to one pole were identified by having one ABS dot on both sides (second column). Figures with bridges invariably had one or two ABS dots in the midzone, suggesting there had been recombination between centromere and ABS4, and that centromere cohesion at ABS4 restrained movement. At late anaphase I and telophase I, no intact bridges were observed.

Extended Data Fig. 5 Leaf defects observed in plants with both LexA-CENH3(v2) and ABS4.

The leaves of nearly all LexA-CENH3(v2) ABS4 plants looked and felt uneven, with ridges or crinkles. Occasionally the leaves had missing pieces, such as shown here.

Extended Data Fig. 6 Crosses involving c2-GFP.

a) The cross used to generate material for the neochromosome screen. C2 confers purple pigmentation to the outer layers of the endosperm (purple appears black under the blue light used here). The binding of LexA-CENH3 to ABS4 causes errors in chromosome segregation and loss of the linked C2 gene in sectors (arrow). Two other recessive color alleles (c1 and r1) are also segregating in these transgenic lines, which caused many kernels to be colorless regardless of the presence of C2 (in this case only c1 was heterozygous on the female side). b) Fluorescent sectored kernels from A were planted and crossed as females to a c2 tester. Kernels that received both C2 (purple aleurone) and c2-GFP (fluorescent endosperm) were candidates for having inherited a neochromosome. This ear shows such a kernel. Filing off the outer layer of cells removes the purple pigment and makes the underlying fluorescence more obvious (arrow).

Extended Data Fig. 7 Pedigrees of Neo4L chromosomes.

Females are shown on the left side of the crosses. Neo4L-2, Neo4L-3, Neo4L-4 are denoted as Neo4L-X in the pedigree.

Extended Data Table. 1 Segregation data for Neo4L chromosomes

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, and Data 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawe, R.K., Gent, J.I., Zeng, Y. et al. Synthetic maize centromeres transmit chromosomes across generations. Nat. Plants 9, 433–441 (2023). https://doi.org/10.1038/s41477-023-01370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-023-01370-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing