Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Designing a synthetic moss genome using GenoDesigner

Subjects

An Author Correction to this article was published on 07 June 2024

This article has been updated

Abstract

The de novo synthesis of genomes has made unprecedented progress and achieved milestones, particularly in bacteria and yeast. However, the process of synthesizing a multicellular plant genome has not progressed at the same pace, due to the complexity of multicellular plant genomes, technical difficulties associated with large genome size and structure, and the intricacies of gene regulation and expression in plants. Here we outline the bottom-up design principles for the de novo synthesis of the Physcomitrium patens (that is, earthmoss) genome. To facilitate international collaboration and accessibility, we have developed and launched a public online design platform called GenoDesigner. This platform offers an intuitive graphical interface enabling users to efficiently manipulate extensive genome sequences, even up to the gigabase level. This tool is poised to greatly expedite the synthesis of the P. patens genome, offering an essential reference and roadmap for the synthesis of plant genomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The design principles for the SynMoss genome.
Fig. 2: Strategy for constructing the SynMoss genome.
Fig. 3: Overview of the GenoDesigner software.

Similar content being viewed by others

Data availability

All genome data used in the design of SynMoss are available via Figshare at https://doi.org/10.6084/m9.figshare.22975925.v5 (ref. 51).

Code availability

The source code and instructions for GenoDesigner are available at https://github.com/SynMoss/GenoDesigner. The server is accessible at http://49.51.34.198:3000/client/chromosome/en/#/. Related Python and R programs are available at https://github.com/WenfeiY/P.patens_geno_design.

Change history

References

  1. Sinyakov, A. N., Ryabinin, V. A. & Kostina, E. V. Application of array-based oligonucleotides for synthesis of genetic designs. Mol. Biol. (Mosk.) 55, 562–577 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. He, B. et al. YLC-assembly: large DNA assembly via yeast life cycle. Nucleic Acids Res. 51, 8283–8292 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanna, R. E. & Doench, J. G. Design and analysis of CRISPR–Cas experiments. Nat. Biotechnol. 38, 813–823 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Dymond, J. S. et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477, 471–476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cello, J., Paul, A. V. & Wimmer, E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297, 1016–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, H. O., Hutchison, C. A. 3rd, Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 100, 15440–15445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Annaluru, N. et al. Total synthesis of a functional designer eukaryotic chromosome. Science 344, 55–58 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitchell, L. A. et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science https://doi.org/10.1126/science.aaf4831 (2017).

  12. Shen, Y. et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science https://doi.org/10.1126/science.aaf4791 (2017).

  13. Vashee, S. et al. Cloning, assembly, and modification of the primary human cytomegalovirus isolate toledo by yeast-based transformation-associated recombination. mSphere 2, e00331–00317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, Y. et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science https://doi.org/10.1126/science.aaf4706 (2017).

  15. Xie, Z. X. et al. ‘Perfect’ designer chromosome V and behavior of a ring derivative. Science https://doi.org/10.1126/science.aaf4704 (2017).

  16. Blount, B. A. et al. Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics. Cell Genom. https://doi.org/10.1016/j.xgen.2023.100418 (2023).

  17. Foo, J. L. et al. Establishing chromosomal design–build–test–learn through a synthetic chromosome and its combinatorial reconfiguration. Cell Genom. https://doi.org/10.1016/j.xgen.2023.100435 (2023).

  18. Lauer, S. et al. Context-dependent neocentromere activity in synthetic yeast chromosome VIII. Cell Genom. https://doi.org/10.1016/j.xgen.2023.100437 (2023).

  19. Luo, J. et al. Synthetic chromosome fusion: effects on mitotic and meiotic genome structure and function. Cell Genom. https://doi.org/10.1016/j.xgen.2023.100439 (2023).

  20. McCulloch, L. H. et al. Consequences of a telomerase-related fitness defect and chromosome substitution technology in yeast synIX strains. Cell Genom. https://doi.org/10.1016/j.xgen.2023.100419 (2023).

  21. Schindler, D. et al. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell https://doi.org/10.1016/j.cell.2023.10.015 (2023).

  22. Shen, Y. et al. Dissecting aneuploidy phenotypes by constructing Sc2.0 chromosome VII and SCRaMbLEing synthetic disomic yeast. Cell Genom. https://doi.org/10.1016/j.xgen.2023.100364 (2023).

  23. Williams, T. C. et al. Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects. Cell Genom. https://doi.org/10.1016/j.xgen.2023.100379 (2023).

  24. Zhang, W. et al. Manipulating the 3D organization of the largest synthetic yeast chromosome. Mol. Cell 83, 4424–4437.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, Y. et al. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell 186, 5220–5236.e16 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Boeke, J. D. et al. The Genome Project-Write. Science 353, 126–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Dai, J., Boeke, J. D., Luo, Z., Jiang, S. & Cai, Y. Sc3.0: revamping and minimizing the yeast genome. Genome Biol. 21, 205 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rensing, S. A., Goffinet, B., Meyberg, R., Wu, S.-Z. & Bezanilla, M. The moss Physcomitrium (Physcomitrella) patens: a model organism for non-seed plants. Plant Cell 32, 1361–1376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lang, D. et al. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 93, 515–533 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Bi, G. et al. Near telomere-to-telomere genome of the model plant Physcomitrium patens. Nat. Plants 10, 327–343 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Ye, Z.-H. & Zhong, R. Cell wall biology of the moss Physcomitrium patens. J. Exp. Bot. 73, 4440–4453 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, L.-G. et al. A designer synthetic chromosome fragment functions in moss. Nat. Plants 10, 228–239 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, W. & Stewart, C. N. Plant synthetic promoters and transcription factors. Curr. Opin. Biotechnol. 37, 36–44 (2016).

    Article  PubMed  Google Scholar 

  35. Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ostrov, N. et al. Design, synthesis, and testing toward a 57-codon genome. Science 353, 819–822 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Venter, J. C., Glass, J. I., Hutchison, C. A. & Vashee, S. Synthetic chromosomes, genomes, viruses, and cells. Cell 185, 2708–2724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dymond, J. & Boeke, J. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng. Bugs 3, 168–171 (2012).

    PubMed  PubMed Central  Google Scholar 

  40. Shen, Y. et al. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res. 26, 36–49 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mercy, G. et al. 3D organization of synthetic and scrambled chromosomes. Science https://doi.org/10.1126/science.aaf4597 (2017).

  42. Blount, B. A. et al. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat. Commun. 9, 1932 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jia, B. et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nat. Commun. https://doi.org/10.1038/s41467-018-03084-4 (2018).

  44. Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 18, 5–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Kobayashi, W. et al. Homologous pairing activities of Arabidopsis thaliana RAD51 and DMC1. J. Biochem. 165, 289–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Kamisugi, Y. et al. The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res. 34, 6205–6214 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Galdzicki, M., Rodriguez, C., Chandran, D., Sauro, H. M. & Gennari, J. H. Standard Biological Parts Knowledgebase. PLoS ONE 6, e17005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 8, 352–359 (2016).

    Article  Google Scholar 

  50. Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao, S. Telomere-to-telomere (T2T) genome of the model plant Physcomitrium patens. Figshare https://doi.org/10.6084/m9.figshare.22975925.v5 (2023).

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (grant nos 2022YFF1201800, 2021YFF1201700 and 2019YFA0903900), the National Natural Science Foundation of China (grant no. 32201207), the Innovation Program of the Chinese Academy of Agricultural Sciences, the Shenzhen Science and Technology Program (grant nos KQTD20180413181837372 and RCYX20221008092950122), the Shenzhen Outstanding Talents Training Fund, the CAS Project for Young Scientists in Basic Research (grant no. YSBR-078) and the Strategic Priority Research Program (Precision Seed Design and Breeding, grant no. XDA24020103).

Author information

Authors and Affiliations

Authors

Contributions

J.Y., Q.Z., B.M., Y.W., Y.J., Y.M., X.H., W.Q. and J.D. conceived and designed the project. X.H., W.Q. and J.D. supervised the research. W.Y., S. Zhang and X.H. completed the programming. S. Zhao analysed the RNA-seq data. L.-g.C., J.C. and H.Y. performed the experiments. W.Y., S. Zhang, X.H., W.Q. and J.D. wrote the manuscript.

Corresponding authors

Correspondence to Xiaoluo Huang, Wenfeng Qian or Junbiao Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Zhang, S., Zhao, S. et al. Designing a synthetic moss genome using GenoDesigner. Nat. Plants 10, 848–856 (2024). https://doi.org/10.1038/s41477-024-01693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-024-01693-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research