Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolic flux analysis in leaf metabolism quantifies the link between photorespiration and one carbon metabolism

Abstract

Photorespiration is the second largest carbon flux in most leaves and is integrated into metabolism broadly including one-carbon (C1) metabolism. Photorespiratory intermediates such as serine and others may serve as sources of C1 units, but it is unclear to what degree this happens in vivo, whether altered photorespiration changes flux to C1 metabolism, and if so through which intermediates. To clarify these questions, we quantified carbon flux from photorespiration to C1 metabolism using 13CO2 labelling and isotopically non-stationary metabolic flux analysis in Arabidopsis thaliana under different O2 concentrations which modulate photorespiration. The results revealed that ~5.8% of assimilated carbon passes to C1 metabolism under ambient photorespiratory conditions, but this flux greatly decreases under limited photorespiration. Furthermore, the primary carbon flux from photorespiration to C1 metabolism is through serine. Our results provide fundamental insight into how photorespiration is integrated into C1 metabolism, with possible implications for C1 metabolic response to climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the link between photorespiration and C1 metabolism.
Fig. 2: Net CO2 assimilation, rubisco carboxylation and oxygenation rate in response to different photorespiratory conditions.
Fig. 3: 13C labelling kinetics of photorespiratory intermediates and C1-containing metabolites in wild-type A. thaliana leaves exposed to 2% O2 and 21% O2.
Fig. 4: Photorespiratory and C1 metabolic fluxes in A. thaliana wild-type leaves exposed to 21% O2 and 2% O2 conditions.

Similar content being viewed by others

Data availability

Data, code and models are available in the Supplementary Information.

References

  1. Tcherkez, G. The mechanism of Rubisco‐catalysed oxygenation. Plant Cell Environ. 39, 983–997 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Ogren, W. L. Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration 911–921 (Springer, 2002); https://doi.org/10.1007/1-4020-3324-9_82

  3. Walker, B. J., VanLoocke, A., Bernacchi, C. J. & Ort, D. R. The costs of photorespiration to food production now and in the future. Annu. Rev. Plant Biol. 67, 1–23 (2016).

    Article  Google Scholar 

  4. Timm, S. et al. A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20, 2848–2859 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abadie, C., Boex-Fontvieille, E. R. A., Carroll, A. J. & Tcherkez, G. In vivo stoichiometry of photorespiratory metabolism. Nat. Plants 2, 15220 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Timm, S. & Hagemann, M. Photorespiration—how is it regulated and how does it regulate overall plant metabolism? J. Exp. Bot. 71, 3955–3965 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Sharkey, T. D. Estimating the rate of photorespiration in leaves. Physiol. Plant. 73, 147–152 (1988).

    Article  CAS  Google Scholar 

  8. Noctor, G. & Foyer, C. H. A re-evaluation of the ATP:NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J. Exp. Bot. 49, 1895–1908 (1998).

    CAS  Google Scholar 

  9. Wallsgrove, R. M., Keys, A. J., Lea, P. J. & Miflin, B. J. Photosynthesis, photorespiration and nitrogen metabolism. Plant Cell Environ. 6, 301–309 (1983).

    Article  CAS  Google Scholar 

  10. Dellero, Y., Lamothe‐Sibold, M., Jossier, M. & Hodges, M. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth. Plant J. 83, 1005–1018 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Dellero, Y. et al. Decreased glycolate oxidase activity leads to altered carbon allocation and leaf senescence after a transfer from high CO2 to ambient air in Arabidopsis thaliana. J. Exp. Bot. 67, 3149–3163 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi, S., Bauwe, H. & Badger, M. Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol. 144, 487–494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Timm, S. et al. High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. PLoS ONE 7, e42809 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Busch, F. A., Sage, T. L., Cousins, A. B. & Sage, R. F. C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ. 36, 200–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Busch, F. A. Photorespiration in the context of Rubisco biochemistry, CO2 diffusion and metabolism. Plant J. 101, 919–939 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Dellero, Y., Berardocco, S., Berges, C., Filangi, O. & Bouchereau, A. Validation of carbon isotopologue distribution measurements by GC-MS and application to 13C-metabolic flux analysis of the tricarboxylic acid cycle in Brassica napus leaves. Front. Plant Sci. 13, 885051 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dellero, Y., Berardocco, S. & Bouchereau, A. U-13C-glucose incorporation into source leaves of Brassica napus highlights light-dependent regulations of metabolic fluxes within central carbon metabolism. J. Plant Physiol. 292, 154162 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Busch, F. A., Sage, R. F. & Farquhar, G. D. Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway. Nat. Plants 4, 46–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Abadie, C. & Tcherkez, G. Plant sulphur metabolism is stimulated by photorespiration. Commun. Biol. 2, 379 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fu, X., Gregory, L. M., Weise, S. E. & Walker, B. J. Integrated flux and pool size analysis in plant central metabolism reveals unique roles of glycine and serine during photorespiration. Nat. Plants 9, 169–178 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Mouillon, J. et al. Glycine and serine catabolism in non‐photosynthetic higher plant cells: their role in C1 metabolism. Plant J. 20, 197–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Hodges, M. et al. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. J. Exp. Bot. 67, 3015–3026 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Tcherkez, G. et al. Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc. Natl Acad. Sci. USA 105, 797–802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Foyer, C. H. & Hanke, G. ROS production and signalling in chloroplasts: cornerstones and evolving concepts. Plant J. 111, 642–661 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suzuki, N., Koussevitzky, S., Mittler, R. & Miller, G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 35, 259–270 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Kangasjärvi, S., Neukermans, J., Li, S., Aro, E.-M. & Noctor, G. Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63, 1619–1636 (2012).

    Article  PubMed  Google Scholar 

  27. Hanson, A. D. & Roje, S. One-carbon metabolism in higher plants. Annu. Rev. Plant Phys. 52, 119–137 (2001).

    Article  CAS  Google Scholar 

  28. Li, R., Moore, M. & King, J. Investigating the regulation of one-carbon metabolism in Arabidopsis thaliana. Plant Cell Physiol. 44, 233–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Hanson, A. D., Gage, D. A. & Shachar-Hill, Y. Plant one-carbon metabolism and its engineering. Trends Plant Sci. 5, 206–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Gorelova, V., Ambach, L., Rébeillé, F., Stove, C. & Straeten, D. V. D. Folates in plants: research advances and progress in crop biofortification. Front. Chem. 5, 21 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rosa-Téllez, S. et al. The serine-glycine-one-carbon metabolic network orchestrates changes in nitrogen and sulfur metabolism and shapes plant development. Plant Cell. 36, 404–426 (2023).

    Article  PubMed Central  Google Scholar 

  32. Xie, H. et al. Combining loss of function of FOLYLPOLYGLUTAMATE SYNTHETASE1 and CAFFEOYL-COA 3-O-METHYLTRANSFERASE1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana. Biotechnol. Biofuels 12, 108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lloyd, M. K. et al. Isotopic clumping in wood as a proxy for photorespiration in trees. Proc. Natl Acad. Sci. USA 120, e2306736120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ros, R., Muñoz-Bertomeu, J. & Krueger, S. Serine in plants: biosynthesis, metabolism, and functions. Trends Plant Sci. 19, 564–569 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Jardine, K. J. et al. The ‘photosynthetic C1 pathway’ links carbon assimilation and growth in California poplar. Commun. Biol. 7, 1469 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zimmermann, S. E. et al. The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism. Plant Physiol. 186, 1487–1506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prabhu, V., Chatson, K. B., Abrams, G. D. & King, J. 13C nuclear magnetic resonance detection of interactions of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in Arabidopsis. Plant Physiol. 112, 207–216 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engel, N. et al. Deletion of glycine decarboxylase in Arabidopsis is lethal under nonphotorespiratory conditions. Plant Physiol. 144, 1328–1335 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Engel, N. et al. The presequence of Arabidopsis serine hydroxymethyltransferase SHM2 selectively prevents import into mesophyll mitochondria. Plant Physiol. 157, 1711–1720 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Timm, S. & Bauwe, H. The variety of photorespiratory phenotypes – employing the current status for future research directions on photorespiration. Plant Biol. 15, 737–747 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Voll, L. M. et al. The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1. Plant Physiol. 140, 59–66 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ravanel, S., Gakière, B., Job, D. & Douce, R. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl Acad. Sci. USA 95, 7805–7812 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crider, K. S., Yang, T. P., Berry, R. J. & Bailey, L. B. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv. Nutr. 3, 21–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ravanel, S. et al. Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol*. J. Biol. Chem. 279, 22548–22557 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Wei, Z. et al. Folate polyglutamylation eliminates dependence of activity on enzyme concentration in mitochondrial serine hydroxymethyltransferases from Arabidopsis thaliana. Arch. Biochem. Biophys. 536, 87–96 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Bao, H. et al. Catalase protects against nonenzymatic decarboxylations during photorespiration in Arabidopsis thaliana. Plant Direct 5, (2021).

  47. Keech, O. et al. The genetic dissection of a short-term response to low CO2 supports the possibility for peroxide-mediated decarboxylation of photorespiratory intermediates in the peroxisome. Mol. Plant 5, 1413–1416 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, L., Chan, S. Y. & Cossins, E. A. Distribution of folate derivatives and enzymes for synthesis of 10-formyltetrahydrofolate in cytosolic and mitochondrial fractions of pea leaves. Plant Physiol. 115, 299–309 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mhamdi, A. et al. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 61, 4197–4220 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Queval, G. et al. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength‐dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2‐induced cell death. Plant J. 52, 640–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, C. et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 4, eaaq1012 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Smith, K., Strand, D. D., Kramer, D. M. & Walker, B. J. The role of photorespiration in preventing feedback regulation via ATP synthase in Nicotiana tabacum. Plant Cell Environ. 47, 416–428 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Ma, F., Jazmin, L. J., Young, J. D. & Allen, D. K. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc. Natl Acad. Sci. USA 111, 16967–16972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, Y., Fu, X., Sharkey, T. D., Shachar-Hill, Y. & Walker, B. J. The metabolic origins of non-photorespiratory CO2 release during photosynthesis: a metabolic flux analysis. Plant Physiol. 186, kiab076- (2021).

    Article  Google Scholar 

  55. Xu, Y., Wieloch, T., Kaste, J. A. M., Shachar-Hill, Y. & Sharkey, T. D. Reimport of carbon from cytosolic and vacuolar sugar pools into the Calvin–Benson cycle explains photosynthesis labeling anomalies. Proc. Natl Acad. Sci. USA 119, e2121531119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dat, J. F., Inze, D. & Van Breusegem, F. Catalase-deficient tobacco plants: tools for in planta studies on the role of hydrogen peroxide. Redox Rep. 6, 37–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Rontein, D., Rhodes, D. & Hanson, A. D. Evidence from engineering that decarboxylation of free serine is the major source of ethanolamine moieties in plants. Plant Cell Physiol. 44, 1185–1191 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Timm, S. et al. Metabolite profiling in Arabidopsis thaliana with moderately impaired photorespiration reveals novel metabolic links and compensatory mechanisms of photorespiration. Metabolites 11, 391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Springsteen, G., Yerabolu, J. R., Nelson, J., Rhea, C. J. & Krishnamurthy, R. Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat. Commun. 9, 91 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sundqvist, N. et al. Validation-based model selection for 13C metabolic flux analysis with uncertain measurement errors. PLoS Comput. Biol. 18, e1009999 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaste, J. A. M. & Shachar‐Hill, Y. Model validation and selection in metabolic flux analysis and flux balance analysis. Biotechnol. Prog. 40, e3413 (2024).

    Article  CAS  PubMed  Google Scholar 

  62. Nelson, C. J., Alexova, R., Jacoby, R. P. & Millar, A. H. Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling. Plant Physiol. 166, 91–108 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Neuburger, M., Rébeillé, F., Jourdain, A., Nakamura, S. & Douce, R. Mitochondria are a major site for folate and thymidylate synthesis in plants. J. Biol. Chem. 271, 9466–9472 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Ambard-Bretteville, F. et al. Repression of formate dehydrogenase in Solanum tuberosum increases steady-state levels of formate and accelerates the accumulation of proline in response to osmotic stress. Plant Mol. Biol. 52, 1153–1168 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Watanabe, M. et al. Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol. 162, 1290–1310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hildebrandt, T. M., Nunes Nesi, A., Araújo, W. L. & Braun, H.-P. Amino acid catabolism in plants. Mol. Plant 8, 1563–1579 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Ishihara, H., Obata, T., Sulpice, R., Fernie, A. R. & Stitt, M. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein. Plant Physiol. 168, 74–93 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cegelski, L. & Schaefer, J. Glycine metabolism in intact leaves by in vivo 13C and 15N labeling*. J. Biol. Chem. 280, 39238–39245 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Fürtauer, L., Küstner, L., Weckwerth, W., Heyer, A. G. & Nägele, T. Resolving subcellular plant metabolism. Plant J. 100, 438–455 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ouyang, Y., Wu, Q., Li, J., Sun, S. & Sun, S. S‐adenosylmethionine: a metabolite critical to the regulation of autophagy. Cell Prolif. 53, e12891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Voyard, A. et al. Emissions of volatile organic compounds from aboveground and belowground parts of rapeseed (Brassica napus L.) and tomato (Solanum lycopersicum L.). Sci. Total Environ. 955, 177081 (2024).

    Article  CAS  PubMed  Google Scholar 

  72. Blaschke, L., Legrand, M., Mai, C. & Polle, A. Lignification and structural biomass production in tobacco with suppressed caffeic/5‐hydroxy ferulic acid‐O‐methyl transferase activity under ambient and elevated CO2 concentrations. Physiol. Plant. 121, 75–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Srivastava, A. C. et al. Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis. Biotechnol. Biofuels 8, 224 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tang, H. M. et al. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J. 77, 380–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Roje, S. S-Adenosyl-l-methionine: beyond the universal methyl group donor. Phytochemistry 67, 1686–1698 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Sharkey, T. D. O2-insensitive photosynthesis in C3 plants: its occurrence and a possible explanation. Plant Physiol. 78, 71–75 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Harley, P. C. & Sharkey, T. D. An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynth. Res. 27, 169–178 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Walker, B., Schmiege, S. C. & Sharkey, T. D. Re‐evaluating the energy balance of the many routes of carbon flow through and from photorespiration. Plant Cell Environ. 47, 3365–3374 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Heinrich, P. et al. Correcting for natural isotope abundance and tracer impurity in MS-, MS/MS- and high-resolution-multiple-tracer-data from stable isotope labeling experiments with IsoCorrectoR. Sci. Rep. 8, 17910 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Draper, N. R. & Smith, H. Extra sums of squares and tests for several parameters being zero. in Applied Regression Analysis (eds Draper, N. R. & Smith, H.) 149–177 (Wiley, 1998).

  81. Boyle, N. R., Sengupta, N. & Morgan, J. A. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii. PLoS ONE 12, e0177292 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab. Eng. 8, 324–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Young, J. D., Walther, J. L., Antoniewicz, M. R., Yoo, H. & Stephanopoulos, G. An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol. Bioeng. 99, 686–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. McGraw, K. O. & Wong, S. P. A common language effect size statistic. Psychol. Bull. 111, 361–365 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (award numbers 2015843 and MCB-2015828). Work in the laboratory of B.J.W. is supported by grant number DE-FG02-91ER20021 from the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy. We thank L. Chen, C. Johnny and A. Schilmiller (Michigan State University Mass Spectrometry and Metabolomics Core Facility) for excellent support of mass spectrometry analysis. We thank X. Fu (Michigan State University) for helpful discussions on INST-MFA. We thank S. E. Weise, T. D. Sharkey, Y. Xu and P. Srivastava for providing technical support in measuring starch and sucrose partitioning. We also thank L. Gregory for taking care of catalase knock plants during the experimental period.

Author information

Authors and Affiliations

Authors

Contributions

B.J.W. and K.G. designed the experiments with input from S.R. Additional statistical analysis was performed by J.A.M.K. K.G. carried out mass spectrometry analysis and gas-exchange experiments. B.J.W. and K.G. developed the INST-MFA model for fitting against the data. All authors participated in writing. B.J.W. serves as the author responsible for contact and ensures communication.

Corresponding author

Correspondence to Berkley J. Walker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Younès Dellero, Alisdair Fernie, Edward Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Materials and Methods.

Reporting Summary

Supplementary Code 1

Python code for probability of superiority analysis.

Supplementary Model 1

INCA models and data for the 2% condition comprising .mat model files and a .m file for running the models on a computing cluster.

Supplementary Model 2

INCA models and data for the 21% condition comprising .mat model files and a .m file for running the models on a computing cluster.

Supplementary Data 1

Flux solutions, fractional enrichments and statistics comparing metabolomics results.

Supplementary Data 2

Model validation results.

Supplementary Data 3

Probability of superiority results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashu, K., Kaste, J.A.M., Roje, S. et al. Metabolic flux analysis in leaf metabolism quantifies the link between photorespiration and one carbon metabolism. Nat. Plants 11, 1877–1889 (2025). https://doi.org/10.1038/s41477-025-02091-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-02091-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing