Table 3 Summary of materials property prediction tools.

From: MaterialsAtlas.org: a materials informatics web app platform for materials discovery and survey of state-of-the-art

Property prediction

Model

Training dataset

Performance

Output

2D materials

Random Forest

2DMatPedia Material Project

88.98% (Acc)

Label

    

Probability

Noncentro symmetry

Random Forest

Material Project

84.8% (Acc)

Label

    

Probability

Band gap

Roost DeeperGATGNN

Material Project

0.465 (MAE)

Band gap

    

(eV)

Elastic moduli

CrabNet DeeperGATGNN

12858 samples from MP

15.7 (MAE, Bulk)

Bulk mod (GPa)

   

18 (MAE, Shear)

Shear mod (GPa)

   

76.8 (MAE, Young’s)

Young’s mod (psi)

   

8.7 (MAE, Poisson)

Poisson ratio

Hardness

Roost DeeperGATGNN

12854 samples from MP

2.42 (MAE)

Hardness (N/mm2)

Thermal conductivity

CrabNet DeeperGATGNN

2688 samples from ICSD

5.03 (MAE)

Thermal conductivity (W/(mK))

Ionic conductivity

under development

N/A

N/A

Ionic conductivity

Superconductivity

Random Forest CrabNet

25378 samples from supercon

4.76 (MAE)

Transition temperature (K)