Table 1 Calculation accuracy comparison between the proposed NVNMD and the established MLMD/CMD.

From: Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture

Method

System

Computer architecture

Computing hardware

|∆Ei| (kcal mol−1)

μe (kcal mol−1)

NVNMD (this work)

Benzene

NvN

FPGA

0.19

0.21

Naphthalene

FPGA

0.39

Aspirin

FPGA

0.32

Antimony (bulk)

FPGA

0.14

Germanium telluride (bulk)

FPGA

0.09

Li-Ge-P-S (bulk)

FPGA

0.14

MLMD

Benzene26,27,31,58

vN

GPU

0.07/0.07

0.17

Uracil26,27,31,58

GPU

0.09/0.11

Naphthalene26,27,31,58

GPU

0.12/0.12

Aspirin26,27,31,58

GPU

0.27/0.27

Salicylic acid26,27,31,58

GPU

0.12/0.12

Malonaldehyde26,27,31,58

GPU

0.16/0.16

Ethanol26,27,31,58

GPU

0.15/0.15

Toluene26,27,31,58

GPU

0.12/0.12

Water26,27,31

GPU

0.01

Glycine proton transfer65,96

CPU

0.3–0.4

Acetic acid65,66

CPU

0.2

Acetamide65,66

CPU

0.4

Acetone65,66

CPU

0.4

Ethanol65,66

CPU

0.2

Germanium telluride56

GPU

0.09

Li-Ge-P-S62

GPU

0.04

CMD

700 different molecular structures93

vN

GPU/CPU

10 (est.)

≈10

Small-molecule solvation and protein-ligand binding67

GPU/CPU

3.6–6.3

AMBER intermolecular terms w.r.t. DFT-SAPT94

GPU/CPU

10 (est.)

Nobel gas absorption in metal organic framework95

GPU/CPU

8.4-12.6

  1. Ei is the RMSE with respect to ab-initio calculations. μe is the average value of |∆Ei|. The abbreviation FPGA represents field programmable gate array.