Table 1 Calculation accuracy comparison between the proposed NVNMD and the established MLMD/CMD.
From: Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture
Method | System | Computer architecture | Computing hardware | |∆Ei| (kcal mol−1) | μe (kcal mol−1) |
|---|---|---|---|---|---|
NVNMD (this work) | Benzene | NvN | FPGA | 0.19 | 0.21 |
Naphthalene | FPGA | 0.39 | |||
Aspirin | FPGA | 0.32 | |||
Antimony (bulk) | FPGA | 0.14 | |||
Germanium telluride (bulk) | FPGA | 0.09 | |||
Li-Ge-P-S (bulk) | FPGA | 0.14 | |||
MLMD | vN | GPU | 0.07/0.07 | 0.17 | |
GPU | 0.09/0.11 | ||||
GPU | 0.12/0.12 | ||||
GPU | 0.27/0.27 | ||||
GPU | 0.12/0.12 | ||||
GPU | 0.16/0.16 | ||||
GPU | 0.15/0.15 | ||||
GPU | 0.12/0.12 | ||||
GPU | 0.01 | ||||
CPU | 0.3–0.4 | ||||
CPU | 0.2 | ||||
CPU | 0.4 | ||||
CPU | 0.4 | ||||
CPU | 0.2 | ||||
Germanium telluride56 | GPU | 0.09 | |||
Li-Ge-P-S62 | GPU | 0.04 | |||
CMD | 700 different molecular structures93 | vN | GPU/CPU | 10 (est.) | ≈10 |
Small-molecule solvation and protein-ligand binding67 | GPU/CPU | 3.6–6.3 | |||
AMBER intermolecular terms w.r.t. DFT-SAPT94 | GPU/CPU | 10 (est.) | |||
Nobel gas absorption in metal organic framework95 | GPU/CPU | 8.4-12.6 |