Table 5 Calculation time efficiency comparison between the proposed NVNMD and the established MLMD/CMD.

From: Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture

Method

System

Computer architecture

Hardware resource

Ti (s step1 atom1)

μt (s step1 atom1)

NVNMD (this work)

Benzene

NvN

FPGA

2.0 × 10−7

2.0 × 10−7

Naphthalene

FPGA

2.0 × 10−7

Aspirin

FPGA

2.0 × 10−7

Antimony (bulk)

FPGA

2.0 × 10−7

Germanium telluride (bulk)

FPGA

2.0 × 10−7

Li-Ge-P-S (bulk)

FPGA

2.0 × 10−7

MLMD

H2O26,27,31

vN

GPU

5.6 × 10−5

2.4 × 10−5

SiO2123

80 CPU cores

3.6 × 10−5

Cu (original DP)124

GPU

2.8 × 10−5

H2O (original DP)124

GPU

9.5 × 10−6

Al-Cu-Mg (original DP)124

GPU

8.7 × 10−5

Cu (compressed DP)124

GPU

2.8 × 10−6

H2O (compressed DP)124

GPU

2.6 × 10−6

Al-Cu-Mg (compressed DP)124

GPU

5.4 × 10−6

GeTe (compressed DP)56

GPU

3.7 × 10−6

Li-Ge-P-S (compressed DP)62

GPU

9.4 × 10−6

CMD

Lennard-Jones32

vN

12 CPU cores

7.0 × 10−7

7.3 × 10−7

Chain32

 

3.2 × 10−7

EAM32

 

1.9 × 10−6

Chute32

 

1.7 × 10−7

GROMACS with SIMD125

64 CPU cores

7.6 × 10−8

GROMACS without SIMD125

 

1.3 × 10−6

  1. Ti is the calculation time efficiency. μt is the average value of Ti. For fair comparison, we list MD calculations based on one GPU, or one FPGA, or one supercomputer node with a moderate number (e.g., <100) of CPU cores.