Table 3 Aberrations and resulting dataset size used in simulated training datasets.

From: nNPipe: a neural network pipeline for automated analysis of morphologically diverse catalyst systems

Applied aberration values

C0 = [−50; −500] Å

C0 = [−300; −1600] Å

C3,0 = [−0.05; 0.5] mm

C3,0 = [−0.05; 0.5] mm

A1 = [0; 250] Å

A1 = [0; 250] Å

A1,θ = [0; 360] °

A1,θ = [0; 360] °

B2 = [0; 500] Å

B2 = [0; 500] Å

B2,θ = [0; 360] °

B2,θ = [0; 360] °

A2 = [0; 1200] Å

A2 = [0; 1200] Å

A2,θ = [0; 360] °

A2,θ = [0; 360] °

σ = [90; 160] Å

σ = [90; 160] Å

GLD criterion

0.025

0.025

Images for object detection

140,000

140,000

Images for semantic segmentation

480,730

618,090