Fig. 4: The expected value of \({\kappa }^{{{{\rm{SISSO}}}}}\left({{{\rm{300\,K}}}}\right)\) relative to select primary features.

The expected value of \({\kappa }^{{{{\rm{SISSO}}}}}\left({{{\rm{300\,K}}}}\right)\), \({E}_{\hat{{{{\mathcal{X}}}}}}\left(\left.{\kappa }^{{{{\rm{SISSO}}}}}\left({{{\rm{300\,K}}}}\right)\right\vert \hat{{{{\mathcal{X}}}}}\right)\), where \(\hat{{{{\mathcal{X}}}}}\) is (a) \(\left\{{\sigma }^{{{{\rm{A}}}}},{V}_{{{{\rm{m}}}}}\right\}\), (b) \(\left\{{\Theta }_{{{{\rm{D,\infty }}}}},{V}_{{{{\rm{m}}}}}\right\}\), (c) \(\left\{{\sigma }^{{{{\rm{A}}}}}\right\}\), (d) \(\left\{{\Theta }_{{{{\rm{D,\infty }}}}}\right\}\), and (e) \(\left\{{V}_{{{{\rm{m}}}}}\right\}\). \({E}_{\hat{{{{\mathcal{X}}}}}}\left(\left.{\kappa }^{{{{\rm{SISSO}}}}}\left({{{\rm{300\,K}}}}\right)\right\vert \hat{{{{\mathcal{X}}}}}\right)\) is calculated by sampling over the multivariate distributions used for the sensitivity analysis, and binning the input data until there are at least 10,000 samples in each bin. The red line in (c–e) corresponds to \({E}_{\hat{{{{\mathcal{X}}}}}}\left(\left.{\kappa }^{{{{\rm{SISSO}}}}}\left({{{\rm{300\,K}}}}\right)\right\vert \hat{{{{\mathcal{X}}}}}\right)\) and the pink shaded region is one standard deviation on either side of the line. The gray shaded regions represent where a thermal conductivity of 10 Wm−1 K−1 or lower is within one standard deviation of the expected value. On all maps all materials in the training set are displayed. The green circles correspond to rock-salts, the blue diamonds are zincblende, the light blue pentagons are wurtzites, and black triangles are all other materials. All points with a \({\kappa }_{{{{\rm{L}}}}}\left({{{\rm{300\,K}}}}\right)\) less than one standard deviation below the expected value based on σA are highlighted in white. The points in (c–e) correspond to the actual values of \({\kappa }_{{{{\rm{L}}}}}\left({{{\rm{300\,K}}}}\right)\) for each material. Additionally we include four materials outside of the training set (yellow stars) whose thermal conductivities we calculate using ab initio molecular dynamics.