Table 2 The average and standard deviation of R2 score, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) for the prediction performance of mechanical properties using the machine learning models, where std denotes the standard deviation

From: NSGAN: a non-dominant sorting optimisation-based generative adversarial design framework for alloy discovery

Property

RF

GBT

ANN

SVR

KNN

R2 score

Mean

Std

Mean

Std

Mean

Std

Mean

Std

Mean

Std

 Tensile strength

0.917

0.025

0.922

0.023

0.887

0.045

0.899

0.034

0.889

0.037

 Yield strength

0.878

0.043

0.889

0.040

0.839

0.055

0.863

0.047

0.862

0.045

 Elongation

0.694

0.145

0.707

0.127

0.644

0.100

0.682

0.094

0.681

0.113

Error metrics

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

 Tensile strength (MPa)

31.34

43.45

30.72

43.28

34.05

49.90

33.83

47.90

34.24

49.02

 Yield strength (MPa)

36.71

53.19

36.64

52.72

40.42

58.96

38.30

56.56

37.80

56.94

 Elongation (%)

2.92

4.24

2.87

4.06

3.46

4.60

3.22

4.40

3.26

4.45