Table 1 DC3 benchmark dataset accuracy comparison between our classification approach and the methods tested in the DC3 work

From: Score-based denoising for atomic structure identification

 

Al (fcc)

Fe (bcc)

Ti (hcp)

Si (cd)

H2O (hd)

NaCl (sc)

Ar (fcc)

Li (bcc)

Mg (hcp)

Ge (cd)

a-CNA

50.3

39.9

15.7

   

57.1

34.4

47.3

 

PTMa

95.9

84.3

82.8

99.9

100.0

94.6

96.9

83.1

95.7

99.2

Denoiser (1 step) + a-CNA

98.5

96.9

81.7

   

98.6

96.9

97.1

 

Denoiser (1 step) + PTM

100.0

99.5

98.7

100.0

100.0

99.3

100.0

99.6

99.9

100.0

Denoiser (8 steps) + a-CNA

100.0

99.7b

100.0

   

100.0

100.0

100.0

 

Denoiser (8 steps) + PTM

100.0

99.9b

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

DC3a

96.9

86.8

89.4

99.0

99.2

95.6

97.5

85.8

97.4

100.0

i-CNAa

68.5

56.6

27.9

   

75.7

51.6

64.9

 

AJAa

66.9

35.6

42.4

   

74.0

34.1

67.0

 

VoroTopa

24.0

61.2

57.5

   

23.1

57.2

57.4

 

Chill+a

   

99.8

98.8

    

100.0

  1. The accuracy value measured at the melting point, computed as the fraction of correctly labeled atoms, is shown in percentage. Our methods are shown in bold font. In our denoising approach, the RMSD (root-mean-square-deviation) cutoff for PTM is 0.1. Missing entries imply non-applicable structure types for the chosen classifier.
  2. aTaken from the DC3 paper20.
  3. bThere is some trace amount of point defects in the BCC Fe snapshots at T = Tm (Supplementary Fig. 6b).