Table 1 Number of independent components in the dielectric tensor for different crystal systems

From: Dielectric tensor prediction for inorganic materials using latent information from preferred potential

Crystal

Number of independent elements

Dielectric tensor

Cubic

1

\(\left[\begin{array}{ccc}\varepsilon &0&0\\ 0&\varepsilon &0\\ 0&0&\varepsilon \end{array}\right]\)

Tetragonal, Triagonal, Hexagonal

2

\(\left[\begin{array}{ccc}{\varepsilon }_{1}&0&0\\ 0&{\varepsilon }_{1}&0\\ 0&0&{\varepsilon }_{3}\end{array}\right]\)

Orthorhombic

3

\(\left[\begin{array}{ccc}{\varepsilon }_{1}&0&0\\ 0&{\varepsilon }_{2}&0\\ 0&0&{\varepsilon }_{3}\end{array}\right]\)

Monoclinic

4

\(\left[\begin{array}{ccc}{\varepsilon }_{11}&0&{\varepsilon }_{13}\\ 0&{\varepsilon }_{2}&0\\ {\varepsilon }_{13}&0&{\varepsilon }_{33}\end{array}\right]\)

Triclinic

6

\(\left[\begin{array}{ccc}{\varepsilon }_{11}&{\varepsilon }_{12}&{\varepsilon }_{13}\\ {\varepsilon }_{12}&{\varepsilon }_{22}&{\varepsilon }_{23}\\ {\varepsilon }_{13}&{\varepsilon }_{23}&{\varepsilon }_{33}\end{array}\right]\)