Table 1 Algorithm: Bayesian optimization

From: Unlocking the black box beyond Bayesian global optimization for materials design using reinforcement learning

[1] Input: Design space X, initial dataset D0, GPR surrogate model M, acquisition function α

[2] Output: Best material design x*

[3] Initialize GPR surrogate model M with D0, D = D0

[4] while not terminated do

// Until max iterations or target performance met

[5] Train/Update GPR surrogate model M using D

[6] xnext = argmax xX α(x; M)

// Inner optimization

[7] ynext = f(xnext)

// Evaluate design

[8] D = D {(xnext, ynext)}

// Update dataset with experiment results

[9] end while

[10] return x* = argmax xD f(x)