Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Computational Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj computational materials
  3. articles
  4. article
Making atomistic materials calculations accessible with the AiiDAlab Quantum ESPRESSO app
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Making atomistic materials calculations accessible with the AiiDAlab Quantum ESPRESSO app

  • Xing Wang1,2 na1,
  • Edan Bainglass1,2 na1,
  • Miki Bonacci1,2 na1,
  • Andres Ortega-Guerrero3 na1,
  • Lorenzo Bastonero4,
  • Marnik Bercx1,2,
  • Pietro Bonfà5,6,
  • Roberto De Renzi7,
  • Dou Du8,
  • Peter N. O. Gillespie6,
  • Michael A. Hernández-Bertrán5,6,
  • Daniel Hollas9,
  • Sebastiaan P. Huber8,
  • Elisa Molinari5,6,
  • Ifeanyi J. Onuorah7,
  • Nataliya Paulish1,2,
  • Deborah Prezzi6,
  • Junfeng Qiao8,
  • Timo Reents1,2,
  • Christopher J. Sewell8,
  • Iurii Timrov1,2,
  • Aliaksandr V. Yakutovich3,
  • Jusong Yu1,2,
  • Nicola Marzari1,2,4,8,
  • Carlo A. Pignedoli3 &
  • …
  • Giovanni Pizzi1,2,8 

npj Computational Materials , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Physics

Abstract

Despite the wide availability of density functional theory (DFT) codes, their adoption by the broader materials science community remains limited due to challenges such as software installation, input preparation, high-performance computing setup, and output analysis. To overcome these barriers, we introduce the Quantum ESPRESSO app, an intuitive, web-based platform built on AiiDAlab that integrates user-friendly graphical interfaces with automated DFT workflows. The app employs a modular Input-Process-Output model and a plugin-based architecture, providing predefined computational protocols, automated error handling, and interactive results visualization. We demonstrate the app’s capabilities through plugins for electronic band structures, projected density of states, phonon, infrared/Raman, X-ray and muon spectroscopies, Hubbard parameters (DFT+U+V), Wannier functions, and post-processing tools. By extending the FAIR principles to simulations, workflows, and analyses, the app enhances the accessibility and reproducibility of advanced DFT calculations and provides a general template to interface with other first-principles calculation codes.

Code availability

The QE app is available as an open-source project and can be accessed from its GitHub repository: https://github.com/aiidalab/aiidalab-qe. The aiida-quantumespresso plugin and its associated workflows are hosted at https://github.com/aiidateam/aiida-quantumespresso. The AiiDAlab platform, which serves as the foundation for these applications, is maintained under the AiiDAlab GitHub organization: https://github.com/aiidalab The aiidalab-launch tool is hosted at https://github.com/aiidalab/aiidalab-launch. Additionally, QE app plugins for different functionalities are available: • aiidalab-qe-vibroscopy: https://github.com/aiidalab/aiidalab-qe-vibroscopy • aiidalab-qe-muon: https://github.com/aiidalab/aiidalab-qe-muon • aiidalab-qe-hp: https://github.com/aiidalab/aiidalab-qe-hp • aiidalab-qe-wannier90: https://github.com/aiidalab/aiidalab-qe-wannier90 • aiida-qe-xspec: https://github.com/aiidaplugins/aiida-qe-xspec • aiidalab-qe-pp: https://github.com/AndresOrtegaGuerrero/aiidalab-qe-pp • aiida-bader: https://github.com/superstar54/aiida-bader All software mentioned in this paper is open-source and freely available to the community.

References

  1. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Google Scholar 

  2. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Google Scholar 

  3. Marzari, N., Ferretti, A. & Wolverton, C. Electronic-structure methods for materials design. Nat. Mater. 20, 736–749 (2021).

    Google Scholar 

  4. Talirz, L., Ghiringhelli, L. M. & Smit, B. Trends in atomistic simulation software usage [article v1.0]. Living J. Comput. Mol. Sci. 3, 1483 (2021).

    Google Scholar 

  5. Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    Google Scholar 

  6. Bosoni, E. et al. How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nat. Rev. Phys. 6, 45–58 (2024).

    Google Scholar 

  7. Blum, V. et al. Roadmap on methods and software for electronic structure based simulations in chemistry and materials. Electron. Struct. 6, 042501 (2024).

    Google Scholar 

  8. Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 

  9. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    Google Scholar 

  10. Cheon, G. et al. Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 17, 1915–1923 (2017).

    Google Scholar 

  11. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    Google Scholar 

  12. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Mater. Cloud Archive 157, https://doi.org/10.24435/materialscloud:yf-kf (2024).

  13. Vecchio, K. S., Dippo, O. F., Kaufmann, K. R. & Liu, X. High-throughput rapid experimental alloy development (HT-READ). Acta Materialia 221, 117352 (2021).

    Google Scholar 

  14. Gjerding, M. N. et al. Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8, 044002 (2021).

    Google Scholar 

  15. Huber, S. et al. Materials Cloud three-dimensional crystals database (MC3D). Materials Cloud Archive 38, https://doi.org/10.24435/materialscloud:rw-t0 (2022).

  16. Curtarolo, S. et al. AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

    Google Scholar 

  17. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N. & Kozinsky, B. AiiDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218–230 (2016).

    Google Scholar 

  18. Uhrin, M., Huber, S. P., Yu, J., Marzari, N. & Pizzi, G. Workflows in AiiDA: engineering a high-throughput, event-based engine for robust and modular computational workflows. Comput. Mater. Sci. 187, 110086 (2021).

    Google Scholar 

  19. Huber, S. P. et al. AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. Sci. Data 7, 300 (2020).

    Google Scholar 

  20. Gjerding, M. et al. Atomic Simulation Recipes: A Python framework and library for automated workflows. Comput. Mater. Sci. 199, 110731 (2021).

    Google Scholar 

  21. Mortensen, J. J., Gjerding, M. & Thygesen, K. S. MyQueue: task and workflow scheduling system. J. Open Source Softw. 5, 1844 (2020).

    Google Scholar 

  22. Mathew, K. et al. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. Comput. Mater. Sci. 139, 140–152 (2017).

    Google Scholar 

  23. Jain, A. et al. Fireworks: a dynamic workflow system designed for high-throughput applications. Concurrency Comput. Pract. Exp. 27, 5037–5059 (2015).

    Google Scholar 

  24. Cunningham, W. et al. Agnostiqhq/covalent: v0.240.0 https://doi.org/10.5281/zenodo.15400489 (2025).

  25. Rosen, A. S. et al. Jobflow: computational workflows made simple. J. Open Source Softw. 9, 5995 (2024).

    Google Scholar 

  26. Armiento, R. Database-Driven High-Throughput Calculations and Machine Learning Models for Materials Design. In Schütt, K. T. et al. (eds.) Machine Learning Meets Quantum Physics, 377–395 https://doi.org/10.1007/978-3-030-40245-7_17 (Springer International Publishing, 2020).

  27. Atwi, R., Bliss, M., Makeev, M. & Rajput, N. N. MISPR: an open-source package for high-throughput multiscale molecular simulations. Sci. Rep. 12, 15760 (2022).

    Google Scholar 

  28. Janssen, J. et al. pyiron: an integrated development environment for computational materials science. Comput. Mater. Sci. 163, 24–36 (2019).

    Google Scholar 

  29. Kirklin, S. et al. The open quantum materials database (oqmd): assessing the accuracy of dft formation energies. npj Comput. Mater. 1, 1–15 (2015).

    Google Scholar 

  30. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 1–9 (2016).

    Google Scholar 

  31. Huber, S. P. et al. Common workflows for computing material properties using different quantum engines. npj Comput. Mater. 7, 136 (2021).

    Google Scholar 

  32. Ganose, A. M. et al. Atomate2: Modular Workflows for Materials Science. ChemRxiv https://doi.org/10.26434/chemrxiv-2025-tcr5h (2025).

  33. Rosen, A. quacc - The Quantum Accelerator https://doi.org/10.5281/zenodo.15641940 (2025).

  34. Baerends, E. J. et al. The amsterdam modeling suite. J. Chem. Phys. 162, 162501 (2025).

    Google Scholar 

  35. Marchesin, F. et al. Atomistic simulation advanced platform (asap) for materials modelling with ab initio methods. In Psi-k Conference 2022 Abstract Book (ASAP, 2022).

  36. mat3ra. https://www.mat3ra.com/ (MAT3RA, 2025).

  37. Meunier, M. & Robertson, S. Materials studio 20th anniversary (Materials Studio, 2021).

  38. Materys. https://www.materys.com (Materys, 2025).

  39. Medea. https://www.materialsdesign.com/medea-software (Medea, 2025).

  40. Smidstrup, S. et al. Quantumatk: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32, 015901 (2019).

    Google Scholar 

  41. Schrödinger. https://www.schrodinger.com (Schrodinger, 2025).

  42. Rêgo, C. R. et al. SimStack: an intuitive workflow framework. Front. Mater. 9, 877597 (2022).

    Google Scholar 

  43. Kokalj, A., Sbraccia, C. & Giannozzi, P. PWgui. http://www-k3.ijs.si/kokalj/pwgui/pwgui.html (PWGUI, 2014).

  44. Burai. https://github.com/BURAI-team/burai (2025).

  45. Mortensen, J. J. et al. GPAW: an open Python package for electronic structure calculations. J. Chem. Phys. 160, 092503 (2024).

    Google Scholar 

  46. Gupta, K., Bhattacharjee, S. & Lee, S.-C. CINEMAS: comprehensively integrated environment for advanced materials simulations. Comput. Mater. Sci. 188, 110238 (2021).

    Google Scholar 

  47. Wang, G. et al. ALKEMIE: an intelligent computational platform for accelerating materials discovery and design. Comput. Mater. Sci. 186, 110064 (2021).

    Google Scholar 

  48. Yakutovich, A. V. et al. AiiDAlab - an ecosystem for developing, executing, and sharing scientific workflows. Comput. Mater. Sci. 188, 110165 (2021).

    Google Scholar 

  49. Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

  50. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

  51. Giannozzi, P. et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).

    Google Scholar 

  52. Appmode: a Jupyter extension that turns notebooks into web applications. https://github.com/oschuett/appmode (Oschuett, 2025).

  53. Goel, A.Computer fundamentals (Pearson Education India, 2010).

  54. Crusoe, M. R. et al. Methods included: standardizing computational reuse and portability with the common workflow language. Commun. ACM 65, 54–63 (2022).

    Google Scholar 

  55. Griem, L. et al. KadiStudio: FAIR modelling of scientific research processes. Data Sci. J. 21, 16–16 (2022).

    Google Scholar 

  56. Andersen, C. W. et al. OPTIMADE, an API for exchanging materials data. Sci. Data 8, 217 (2021).

    Google Scholar 

  57. Evans, M. L. et al. Developments and applications of the optimade api for materials discovery, design, and data exchange. Digit. Discov. 3, 1509–1533 (2024).

    Google Scholar 

  58. Talirz, L. et al. Materials cloud, a platform for open computational science. Sci. Data 7, 299 (2020).

    Google Scholar 

  59. Schmidt, J., Pettersson, L., Verdozzi, C., Botti, S. & Marques, M. A. L. Crystal graph attention networks for the prediction of stable materials. Sci. Adv. 7, eabi7948 (2021).

    Google Scholar 

  60. Schmidt, J. et al. Machine-learning-assisted determination of the global zero-temperature phase diagram of materials. Adv. Mater. 35, 2210788 (2023).

    Google Scholar 

  61. Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. ShakeNBreak: navigating the defect configurational landscape. J. Open Source Softw. 7, 4817 (2022).

    Google Scholar 

  62. de Miranda Nascimento, G. et al. Accurate and efficient protocols for high-throughput first-principles materials simulations. arXiv 2504.03962 (2025).

  63. Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 4, 72 (2018).

    Google Scholar 

  64. van Setten, M. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Computer Phys. Commun. 226, 39–54 (2018).

    Google Scholar 

  65. Grosso, G. & Parravicini, G. P. Solid State Physics, second edn, https://www.sciencedirect.com/science/article/pii/B9780123850300000050 (Academic Press, 2014).

  66. Hinuma, Y., Pizzi, G., Kumagai, Y., Oba, F. & Tanaka, I. Band structure diagram paths based on crystallography. Comput. Mater. Sci. 128, 140–184 (2017).

    Google Scholar 

  67. Togo, A., Shinohara, K. & Tanaka, I. Spglib: a software library for crystal symmetry search. Sci. Technol. Adv. Mater. Methods 4, 2384822 (2024).

  68. Schuler, B. et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin-orbit splitting, and strain. ACS Nano 13, 10520–10534 (2019).

    Google Scholar 

  69. Nielsen, R. S. et al. BaZrS3 lights up: The interplay of electrons, photons, and phonons in strongly luminescent single crystals. Adv. Opt. Mater. 13, e00915 (2025).

  70. Bastonero, L. & Marzari, N. Automated all-functionals infrared and Raman spectra. npj Comput. Mater. 10, 55 (2024).

    Google Scholar 

  71. Bastonero, L. aiida-phonopy. https://github.com/aiida-phonopy/aiida-phonopy (2025).

  72. Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).

    Google Scholar 

  73. Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn. 92, 012001 (2023).

    Google Scholar 

  74. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Google Scholar 

  75. Umari, P. & Pasquarello, A. Ab initio Molecular Dynamics in a Finite Homogeneous Electric Field. Phys. Rev. Lett. 89, 157602 (2002).

    Google Scholar 

  76. Fair, R. et al. Euphonic: inelastic neutron scattering simulations from force constants and visualization tools for phonon properties. J. Appl. Crystallogr. 55, 1689–1703 (2022).

    Google Scholar 

  77. van Bokhoven, J. A. & Lamberti, C.X-Ray Absorption and X-Ray Emission Spectroscopy, vol. 1-2 https://doi.org/10.1002/9781118844243 (Wiley, 2016).

  78. Gougoussis, C., Calandra, M., Seitsonen, A. P. & Mauri, F. First-principles calculations of x-ray absorption in a scheme based on ultrasoft pseudopotentials: From α-quartz to high-Tc compounds. Phys. Rev. B 80, 075102 (2009).

    Google Scholar 

  79. Bunău, O. & Calandra, M. Projector augmented wave calculation of x-ray absorption spectra at the L2,3 edges. Phys. Rev. B 87, 205105 (2013).

    Google Scholar 

  80. Triguero, L., Pettersson, L. & Ågren, H. Calculations of near-edge x-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. Phys. Rev. B 58, 8097 (1998).

    Google Scholar 

  81. Cavigliasso, G. & Chong, D. P. Accurate density-functional calculation of core-electron binding energies by a total-energy difference approach. J. Chem. Phys. 111, 9485–9492 (1999).

    Google Scholar 

  82. Walter, M., Moseler, M. & Pastewka, L. Offset-corrected δ-Kohn-Sham scheme for semiempirical prediction of absolute X-ray photoelectron energies in molecules and solids. Phys. Rev. B 94, 041112 (2016).

  83. de Réotier, P. D. & Yaouanc, A. Muon spin rotation and relaxation in magnetic materials. J. Phys. Condens. Matter 9, 9113 (1997).

    Google Scholar 

  84. Möller, J. S., Ceresoli, D., Lancaster, T., Marzari, N. & Blundell, S. J. Quantum states of muons in fluorides. Phys. Rev. B 87, 121108 (2013).

    Google Scholar 

  85. Bernardini, F., Bonfà, P., Massidda, S. & De Renzi, R. Ab initio strategy for muon site assignment in wide band gap fluorides. Phys. Rev. B 87, 115148 (2013).

    Google Scholar 

  86. Blundell, S. J. et al. Electronic structure calculations for muon spectroscopy. Electron. Struct. 7, 023001 (2025).

    Google Scholar 

  87. Onuorah, I. J. et al. Automated computational workflows for muon spin spectroscopy. Digital Discov. 4, 523–538 (2025).

    Google Scholar 

  88. Onuorah, I. J. et al. Positivemuon/aiida-muon: v1.0.3, https://doi.org/10.5281/zenodo.14594493 (2025).

  89. Bonfà, P., Frassineti, J., Isah, M. M., Onuorah, I. J. & Sanna, S. UNDI: an open-source library to simulate muon-nuclear interactions in solids. Computer Phys. Commun. 260, 107719 (2021).

    Google Scholar 

  90. Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).

    Google Scholar 

  91. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    Google Scholar 

  92. Marrazzo, A. et al. Wannier-function software ecosystem for materials simulations. Rev. Mod. Phys. 96, 045008 (2024).

    Google Scholar 

  93. Damle, A., Lin, L. & Ying, L. Compressed representation of Kohn–Sham orbitals via selected columns of the density matrix. J. Chem. Theory Comput. 11, 1463–1469 (2015).

    Google Scholar 

  94. Vitale, V. et al. Automated high-throughput Wannierisation. npj Comput. Mater. 6, 66 (2020).

    Google Scholar 

  95. Qiao, J., Pizzi, G. & Marzari, N. Projectability disentanglement for accurate and automated electronic-structure Hamiltonians. npj Comput. Mater. 9, 208 (2023).

    Google Scholar 

  96. Biberacher, W. Shubnikov-de Haas and de Haas-van Alphen Techniques. Encycl. Condens. Matter Phys. 4, 228–236 (2005).

    Google Scholar 

  97. Bergemann, C. Fermi Surface Measurements. Encyclopedia of Condensed Matter Physics 185–192 (Elsevier, 2005).

  98. Anisimov, V., Zaanen, J. & Andersen, O. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991).

    Google Scholar 

  99. Liechtenstein, A., Anisimov, V. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467 (1995).

    Google Scholar 

  100. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C. & Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    Google Scholar 

  101. Campo, V. L. & Cococcioni, M. Extended DFT+ U+ V method with on-site and inter-site electronic interactions. J. Phys. Condens. Matter 22, 055602 (2010).

    Google Scholar 

  102. Bastonero, L. et al. First-principles Hubbard parameters with automated and reproducible workflows. npj Comput. Mater. 11, 183 (2025).

    Google Scholar 

  103. Timrov, I., Marzari, N. & Cococcioni, M. Hubbard parameters from density-functional perturbation theory. Phys. Rev. B 98, 085127 (2018).

    Google Scholar 

  104. Timrov, I., Marzari, N. & Cococcioni, M. Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations. Phys. Rev. B 103, 045141 (2021).

    Google Scholar 

  105. Timrov, I., Marzari, N. & Cococcioni, M. HP–A code for the calculation of Hubbard parameters using density-functional perturbation theory. Computer Phys. Commun. 279, 108455 (2022).

    Google Scholar 

  106. Otero-de-la-Roza, A., Johnson, E. R. & Luaña, V. Critic2: a program for real-space analysis of quantum chemical interactions in solids. Computer Phys. Commun. 185, 1007–1018 (2014).

  107. Wang, X. Weas widget. https://github.com/superstar54/weas-widget (Weas, 2025).

  108. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Google Scholar 

  109. aiidalab-empa-surfaces. https://github.com/nanotech-empa/aiidalab-empa-surfaces (2025).

  110. Du, D., Baird, T. J., Bonella, S. & Pizzi, G. OSSCAR, an open platform for collaborative development of computational tools for education in science. Computer Phys. Commun. 282, 108546 (2023).

    Google Scholar 

  111. Du, D., Baird, T. J., Eimre, K., Bonella, S. & Pizzi, G. Jupyter widgets and extensions for education and research in computational physics and chemistry. Computer Phys. Commun. 305, 109353 (2024).

    Google Scholar 

  112. PSI Laboratory for Materials Simulations. Course “Electronic-structure simulations for user communities at large-scale facilities”, 3-9 April 2025, Villigen PSI, Switzerland. https://indico.psi.ch/event/17436/ (2025).

  113. Krasner, G. E. & Pope, S. T. A description of the model-view-controller user interface paradigm in the Smalltalk-80 system. J. Object-Oriented Program. 1, 26–49 (1988).

    Google Scholar 

  114. Gamma, E., Helm, R., Johnson, R. & Vlissides, J.Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994).

  115. Prandini, G. et al. A Standard Solid State Pseudopotentials (SSSP) library optimized for precision and efficiency. Materials Cloud Archive 2023.65 https://doi.org/10.24435/materialscloud:f3-ym (2023).

  116. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  117. Bobzien, L. et al. Layer-Dependent charge-state lifetime of single Se vacancies in WSe2. Phys. Rev. Lett. 134, 076201 (2025).

    Google Scholar 

Download references

Acknowledgements

We gratefully thank Carl Simon Adorf for initial contributions and developments to the QE app. We thank the AiiDA team for their continuous support and contributions to the AiiDA framework, which underpins the QE app, the QE developers for their ongoing efforts in maintaining and improving the QE code, which is the computational engine behind the app, and all users who tested the app and provided valuable feedback, including Nicola Colonna, Thomas J. Hicken, Jonas A. Krieger, Stanislav Nikitin and Tom Fennell. XW, EB, MBo, AOG, MBe, DD, SPH, NP, JQ, TR, CJS, IT, AVY, JY, NM, CAP and GP acknowledge financial support by the NCCR MARVEL, a National Center of Competence in Research, funded by the Swiss National Science Foundation (grant number 205602). EB, CAP and GP acknowledge financial support by the Open Research Data Program of the ETH Board (project “PREMISE”: Open and Reproducible Materials Science Research). EM, DP and NM acknowledge support by the MaX European Center of Excellence – Materials design at the eXascale (www.max-centre.eu), of which QE is a lighthouse code; MaX is supported by the European High Performance Computing Joint Undertaking and participating countries (grant No. 101093374). PNOG and DP acknowledge financial support by the European Union - NextGenerationEU through the Italian Ministry of University and Research under PNRR - M4C2I1.4 ICSC - Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing (Grant No. CN00000013) through the Innovation Grant ASGARD. LB and NM acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy (EXC 2077, No. 390741603, University Allowance, University of Bremen) and Lucio Colombi Ciacchi, the host of the “U Bremen Excellence Chair Program”. NP, JY and GP acknowledge financial support by the Swiss National Science Foundation (SNSF) Project Funding (grant 200021E_206190 “FISH4DIET”). IT acknowledges financial support by the Swiss National Science Foundation (SNSF) Project Funding (grant 200021-227641 and 200021-236507). MBe, XW, JY and GP acknowledge financial support by the SwissTwins project, funded by the Swiss State Secretariat for Education, Research and Innovation (SERI). DD and GP acknowledge financial support by the EPFL Open Science Fund via the OSSCAR project. XW, PNOG, MAHB, EM, DP, NM and GP acknowledge financial support by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 957189 (BIG-MAP), also part of the BATTERY 2030+ initiative under grant agreement No. 957213. JY, NM and GP acknowledge financial support by the MARKETPLACE project funded by Horizon 2020 under the H2020-NMBP-25-2017 call (Grant No. 760173). DH acknowledges financial support by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 803718 (SINDAM) and the UK Research and Innovation (UKRI) EPSRC grant ref. EP/X026973/1. PB, RDR and IJO acknowledge financial support by the PNRR MUR project ECS-00000033-ECOSISTER and from University of Parma through the action “Bando di Ateneo 2023 per la ricerca”. We acknowledge access to Piz Daint and Alps at the Swiss National Supercomputing Center (CSCS), Switzerland under the MARVEL’s share with the project IDs mr32 and mr33. This work was further supported by grants from the Swiss National Supercomputing Center (CSCS) under project IDs lp18, s1267 and s1295 on Alps. We acknowledge ISCRA, ECOSISTER and ICSC for awarding access to the LEONARDO supercomputer, hosted by CINECA (Italy).

Author information

Author notes
  1. These authors contributed equally: Xing Wang, Edan Bainglass, Miki Bonacci, Andres Ortega-Guerrero.

Authors and Affiliations

  1. PSI Center for Scientific Computing, Theory and Data, Villigen PSI, Switzerland

    Xing Wang, Edan Bainglass, Miki Bonacci, Marnik Bercx, Nataliya Paulish, Timo Reents, Iurii Timrov, Jusong Yu, Nicola Marzari & Giovanni Pizzi

  2. National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Villigen PSI, Switzerland

    Xing Wang, Edan Bainglass, Miki Bonacci, Marnik Bercx, Nataliya Paulish, Timo Reents, Iurii Timrov, Jusong Yu, Nicola Marzari & Giovanni Pizzi

  3. nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

    Andres Ortega-Guerrero, Aliaksandr V. Yakutovich & Carlo A. Pignedoli

  4. U Bremen Excellence Chair, Bremen Centre for Computational Materials Science, and MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany

    Lorenzo Bastonero & Nicola Marzari

  5. Dipartimento di Scienze Fisiche, Informatiche, Matematiche (FIM), Università di Modena e Reggio Emilia, Modena, Italy

    Pietro Bonfà, Michael A. Hernández-Bertrán & Elisa Molinari

  6. Nanoscience Institute, National Research Council (CNR-NANO), Modena, Italy

    Pietro Bonfà, Peter N. O. Gillespie, Michael A. Hernández-Bertrán, Elisa Molinari & Deborah Prezzi

  7. Department of Physics and Earth Sciences, University of Parma, Parma, Italy

    Roberto De Renzi & Ifeanyi J. Onuorah

  8. Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

    Dou Du, Sebastiaan P. Huber, Junfeng Qiao, Christopher J. Sewell, Nicola Marzari & Giovanni Pizzi

  9. Center for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK

    Daniel Hollas

Authors
  1. Xing Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Edan Bainglass
    View author publications

    Search author on:PubMed Google Scholar

  3. Miki Bonacci
    View author publications

    Search author on:PubMed Google Scholar

  4. Andres Ortega-Guerrero
    View author publications

    Search author on:PubMed Google Scholar

  5. Lorenzo Bastonero
    View author publications

    Search author on:PubMed Google Scholar

  6. Marnik Bercx
    View author publications

    Search author on:PubMed Google Scholar

  7. Pietro Bonfà
    View author publications

    Search author on:PubMed Google Scholar

  8. Roberto De Renzi
    View author publications

    Search author on:PubMed Google Scholar

  9. Dou Du
    View author publications

    Search author on:PubMed Google Scholar

  10. Peter N. O. Gillespie
    View author publications

    Search author on:PubMed Google Scholar

  11. Michael A. Hernández-Bertrán
    View author publications

    Search author on:PubMed Google Scholar

  12. Daniel Hollas
    View author publications

    Search author on:PubMed Google Scholar

  13. Sebastiaan P. Huber
    View author publications

    Search author on:PubMed Google Scholar

  14. Elisa Molinari
    View author publications

    Search author on:PubMed Google Scholar

  15. Ifeanyi J. Onuorah
    View author publications

    Search author on:PubMed Google Scholar

  16. Nataliya Paulish
    View author publications

    Search author on:PubMed Google Scholar

  17. Deborah Prezzi
    View author publications

    Search author on:PubMed Google Scholar

  18. Junfeng Qiao
    View author publications

    Search author on:PubMed Google Scholar

  19. Timo Reents
    View author publications

    Search author on:PubMed Google Scholar

  20. Christopher J. Sewell
    View author publications

    Search author on:PubMed Google Scholar

  21. Iurii Timrov
    View author publications

    Search author on:PubMed Google Scholar

  22. Aliaksandr V. Yakutovich
    View author publications

    Search author on:PubMed Google Scholar

  23. Jusong Yu
    View author publications

    Search author on:PubMed Google Scholar

  24. Nicola Marzari
    View author publications

    Search author on:PubMed Google Scholar

  25. Carlo A. Pignedoli
    View author publications

    Search author on:PubMed Google Scholar

  26. Giovanni Pizzi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: X.W., E.B., M.Bo., A.O.G., A.V.Y., J.Y., N.M., C.A.P., and G.P. Methodology: X.W., E.B., M.Bo., A.O.G., L.B., M.Be., P.B., R.D.R,. D.D., P.N.O.G., M.A.H.B., D.H., S.P.H., E.M., I.J.O., N.P., D.P., J.Q., T.R., C.J.S., I.T., A.V.Y., J.Y., N.M., C.A.P., and G.P. Software: X.W., E.B., M.Bo., A.O.G., L.B., M.Be., P.B., D.D., P.N.O.G., M.A.H.B., D.H., S.P.H., I.J.O., N.P., D.P., J.Q., T.R., C.J.S., I.T., A.V.Y., J.Y., C.A.P., and G.P. Validation: X.W., E.B., M.Bo., A.O.G., D.P., J.Y., C.A.P., and G.P. Investigation: X.W., E.B., M.Bo., A.O.G., and J.Y. Resources: R.D.R., E.M., D.P., N.M., C.A.P., and G.P. Writing - original draft: X.W., E.B., M.Bo., and A.O.G. Writing - review & editing: X.W., E.B., M.Bo., A.O.G., L.B., M.Be., P.B., R.D.R., P.N.O.G., M.A.H.B., D.H., E.M., I.J.O., N.P., D.P., J.Q., T.R., I.T., A.V.Y., J.Y., N.M., C.A.P., and G.P. Visualization: X.W., E.B., M.Bo., A.O.G., P.N.O.G., M.A.H.B. T.R., A.V.Y., and J.Y. Supervision: R.D.R., E.M., D.P., N.M., C.A.P., and G.P. Project administration: N.M., C.A.P., and G.P. Funding acquisition: R.D.R., E.M., D.P., N.M., C.A.P., and G.P.

Corresponding authors

Correspondence to Xing Wang, Carlo A. Pignedoli or Giovanni Pizzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Bainglass, E., Bonacci, M. et al. Making atomistic materials calculations accessible with the AiiDAlab Quantum ESPRESSO app. npj Comput Mater (2026). https://doi.org/10.1038/s41524-025-01936-4

Download citation

  • Received: 25 July 2025

  • Accepted: 15 December 2025

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41524-025-01936-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • Open Access
  • About the Editors
  • Contact
  • Editorial policies
  • Journal Metrics
  • About the partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Computational Materials (npj Comput Mater)

ISSN 2057-3960 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing