Abstract
Despite the wide availability of density functional theory (DFT) codes, their adoption by the broader materials science community remains limited due to challenges such as software installation, input preparation, high-performance computing setup, and output analysis. To overcome these barriers, we introduce the Quantum ESPRESSO app, an intuitive, web-based platform built on AiiDAlab that integrates user-friendly graphical interfaces with automated DFT workflows. The app employs a modular Input-Process-Output model and a plugin-based architecture, providing predefined computational protocols, automated error handling, and interactive results visualization. We demonstrate the app’s capabilities through plugins for electronic band structures, projected density of states, phonon, infrared/Raman, X-ray and muon spectroscopies, Hubbard parameters (DFT+U+V), Wannier functions, and post-processing tools. By extending the FAIR principles to simulations, workflows, and analyses, the app enhances the accessibility and reproducibility of advanced DFT calculations and provides a general template to interface with other first-principles calculation codes.
Code availability
The QE app is available as an open-source project and can be accessed from its GitHub repository: https://github.com/aiidalab/aiidalab-qe. The aiida-quantumespresso plugin and its associated workflows are hosted at https://github.com/aiidateam/aiida-quantumespresso. The AiiDAlab platform, which serves as the foundation for these applications, is maintained under the AiiDAlab GitHub organization: https://github.com/aiidalab The aiidalab-launch tool is hosted at https://github.com/aiidalab/aiidalab-launch. Additionally, QE app plugins for different functionalities are available: • aiidalab-qe-vibroscopy: https://github.com/aiidalab/aiidalab-qe-vibroscopy • aiidalab-qe-muon: https://github.com/aiidalab/aiidalab-qe-muon • aiidalab-qe-hp: https://github.com/aiidalab/aiidalab-qe-hp • aiidalab-qe-wannier90: https://github.com/aiidalab/aiidalab-qe-wannier90 • aiida-qe-xspec: https://github.com/aiidaplugins/aiida-qe-xspec • aiidalab-qe-pp: https://github.com/AndresOrtegaGuerrero/aiidalab-qe-pp • aiida-bader: https://github.com/superstar54/aiida-bader All software mentioned in this paper is open-source and freely available to the community.
References
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).
Marzari, N., Ferretti, A. & Wolverton, C. Electronic-structure methods for materials design. Nat. Mater. 20, 736–749 (2021).
Talirz, L., Ghiringhelli, L. M. & Smit, B. Trends in atomistic simulation software usage [article v1.0]. Living J. Comput. Mol. Sci. 3, 1483 (2021).
Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).
Bosoni, E. et al. How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nat. Rev. Phys. 6, 45–58 (2024).
Blum, V. et al. Roadmap on methods and software for electronic structure based simulations in chemistry and materials. Electron. Struct. 6, 042501 (2024).
Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).
Cheon, G. et al. Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 17, 1915–1923 (2017).
Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).
Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Mater. Cloud Archive 157, https://doi.org/10.24435/materialscloud:yf-kf (2024).
Vecchio, K. S., Dippo, O. F., Kaufmann, K. R. & Liu, X. High-throughput rapid experimental alloy development (HT-READ). Acta Materialia 221, 117352 (2021).
Gjerding, M. N. et al. Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8, 044002 (2021).
Huber, S. et al. Materials Cloud three-dimensional crystals database (MC3D). Materials Cloud Archive 38, https://doi.org/10.24435/materialscloud:rw-t0 (2022).
Curtarolo, S. et al. AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).
Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N. & Kozinsky, B. AiiDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218–230 (2016).
Uhrin, M., Huber, S. P., Yu, J., Marzari, N. & Pizzi, G. Workflows in AiiDA: engineering a high-throughput, event-based engine for robust and modular computational workflows. Comput. Mater. Sci. 187, 110086 (2021).
Huber, S. P. et al. AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. Sci. Data 7, 300 (2020).
Gjerding, M. et al. Atomic Simulation Recipes: A Python framework and library for automated workflows. Comput. Mater. Sci. 199, 110731 (2021).
Mortensen, J. J., Gjerding, M. & Thygesen, K. S. MyQueue: task and workflow scheduling system. J. Open Source Softw. 5, 1844 (2020).
Mathew, K. et al. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. Comput. Mater. Sci. 139, 140–152 (2017).
Jain, A. et al. Fireworks: a dynamic workflow system designed for high-throughput applications. Concurrency Comput. Pract. Exp. 27, 5037–5059 (2015).
Cunningham, W. et al. Agnostiqhq/covalent: v0.240.0 https://doi.org/10.5281/zenodo.15400489 (2025).
Rosen, A. S. et al. Jobflow: computational workflows made simple. J. Open Source Softw. 9, 5995 (2024).
Armiento, R. Database-Driven High-Throughput Calculations and Machine Learning Models for Materials Design. In Schütt, K. T. et al. (eds.) Machine Learning Meets Quantum Physics, 377–395 https://doi.org/10.1007/978-3-030-40245-7_17 (Springer International Publishing, 2020).
Atwi, R., Bliss, M., Makeev, M. & Rajput, N. N. MISPR: an open-source package for high-throughput multiscale molecular simulations. Sci. Rep. 12, 15760 (2022).
Janssen, J. et al. pyiron: an integrated development environment for computational materials science. Comput. Mater. Sci. 163, 24–36 (2019).
Kirklin, S. et al. The open quantum materials database (oqmd): assessing the accuracy of dft formation energies. npj Comput. Mater. 1, 1–15 (2015).
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 1–9 (2016).
Huber, S. P. et al. Common workflows for computing material properties using different quantum engines. npj Comput. Mater. 7, 136 (2021).
Ganose, A. M. et al. Atomate2: Modular Workflows for Materials Science. ChemRxiv https://doi.org/10.26434/chemrxiv-2025-tcr5h (2025).
Rosen, A. quacc - The Quantum Accelerator https://doi.org/10.5281/zenodo.15641940 (2025).
Baerends, E. J. et al. The amsterdam modeling suite. J. Chem. Phys. 162, 162501 (2025).
Marchesin, F. et al. Atomistic simulation advanced platform (asap) for materials modelling with ab initio methods. In Psi-k Conference 2022 Abstract Book (ASAP, 2022).
mat3ra. https://www.mat3ra.com/ (MAT3RA, 2025).
Meunier, M. & Robertson, S. Materials studio 20th anniversary (Materials Studio, 2021).
Materys. https://www.materys.com (Materys, 2025).
Medea. https://www.materialsdesign.com/medea-software (Medea, 2025).
Smidstrup, S. et al. Quantumatk: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32, 015901 (2019).
Schrödinger. https://www.schrodinger.com (Schrodinger, 2025).
Rêgo, C. R. et al. SimStack: an intuitive workflow framework. Front. Mater. 9, 877597 (2022).
Kokalj, A., Sbraccia, C. & Giannozzi, P. PWgui. http://www-k3.ijs.si/kokalj/pwgui/pwgui.html (PWGUI, 2014).
Burai. https://github.com/BURAI-team/burai (2025).
Mortensen, J. J. et al. GPAW: an open Python package for electronic structure calculations. J. Chem. Phys. 160, 092503 (2024).
Gupta, K., Bhattacharjee, S. & Lee, S.-C. CINEMAS: comprehensively integrated environment for advanced materials simulations. Comput. Mater. Sci. 188, 110238 (2021).
Wang, G. et al. ALKEMIE: an intelligent computational platform for accelerating materials discovery and design. Comput. Mater. Sci. 186, 110064 (2021).
Yakutovich, A. V. et al. AiiDAlab - an ecosystem for developing, executing, and sharing scientific workflows. Comput. Mater. Sci. 188, 110165 (2021).
Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Giannozzi, P. et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).
Appmode: a Jupyter extension that turns notebooks into web applications. https://github.com/oschuett/appmode (Oschuett, 2025).
Goel, A.Computer fundamentals (Pearson Education India, 2010).
Crusoe, M. R. et al. Methods included: standardizing computational reuse and portability with the common workflow language. Commun. ACM 65, 54–63 (2022).
Griem, L. et al. KadiStudio: FAIR modelling of scientific research processes. Data Sci. J. 21, 16–16 (2022).
Andersen, C. W. et al. OPTIMADE, an API for exchanging materials data. Sci. Data 8, 217 (2021).
Evans, M. L. et al. Developments and applications of the optimade api for materials discovery, design, and data exchange. Digit. Discov. 3, 1509–1533 (2024).
Talirz, L. et al. Materials cloud, a platform for open computational science. Sci. Data 7, 299 (2020).
Schmidt, J., Pettersson, L., Verdozzi, C., Botti, S. & Marques, M. A. L. Crystal graph attention networks for the prediction of stable materials. Sci. Adv. 7, eabi7948 (2021).
Schmidt, J. et al. Machine-learning-assisted determination of the global zero-temperature phase diagram of materials. Adv. Mater. 35, 2210788 (2023).
Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. ShakeNBreak: navigating the defect configurational landscape. J. Open Source Softw. 7, 4817 (2022).
de Miranda Nascimento, G. et al. Accurate and efficient protocols for high-throughput first-principles materials simulations. arXiv 2504.03962 (2025).
Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 4, 72 (2018).
van Setten, M. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Computer Phys. Commun. 226, 39–54 (2018).
Grosso, G. & Parravicini, G. P. Solid State Physics, second edn, https://www.sciencedirect.com/science/article/pii/B9780123850300000050 (Academic Press, 2014).
Hinuma, Y., Pizzi, G., Kumagai, Y., Oba, F. & Tanaka, I. Band structure diagram paths based on crystallography. Comput. Mater. Sci. 128, 140–184 (2017).
Togo, A., Shinohara, K. & Tanaka, I. Spglib: a software library for crystal symmetry search. Sci. Technol. Adv. Mater. Methods 4, 2384822 (2024).
Schuler, B. et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin-orbit splitting, and strain. ACS Nano 13, 10520–10534 (2019).
Nielsen, R. S. et al. BaZrS3 lights up: The interplay of electrons, photons, and phonons in strongly luminescent single crystals. Adv. Opt. Mater. 13, e00915 (2025).
Bastonero, L. & Marzari, N. Automated all-functionals infrared and Raman spectra. npj Comput. Mater. 10, 55 (2024).
Bastonero, L. aiida-phonopy. https://github.com/aiida-phonopy/aiida-phonopy (2025).
Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).
Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn. 92, 012001 (2023).
Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
Umari, P. & Pasquarello, A. Ab initio Molecular Dynamics in a Finite Homogeneous Electric Field. Phys. Rev. Lett. 89, 157602 (2002).
Fair, R. et al. Euphonic: inelastic neutron scattering simulations from force constants and visualization tools for phonon properties. J. Appl. Crystallogr. 55, 1689–1703 (2022).
van Bokhoven, J. A. & Lamberti, C.X-Ray Absorption and X-Ray Emission Spectroscopy, vol. 1-2 https://doi.org/10.1002/9781118844243 (Wiley, 2016).
Gougoussis, C., Calandra, M., Seitsonen, A. P. & Mauri, F. First-principles calculations of x-ray absorption in a scheme based on ultrasoft pseudopotentials: From α-quartz to high-Tc compounds. Phys. Rev. B 80, 075102 (2009).
Bunău, O. & Calandra, M. Projector augmented wave calculation of x-ray absorption spectra at the L2,3 edges. Phys. Rev. B 87, 205105 (2013).
Triguero, L., Pettersson, L. & Ågren, H. Calculations of near-edge x-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. Phys. Rev. B 58, 8097 (1998).
Cavigliasso, G. & Chong, D. P. Accurate density-functional calculation of core-electron binding energies by a total-energy difference approach. J. Chem. Phys. 111, 9485–9492 (1999).
Walter, M., Moseler, M. & Pastewka, L. Offset-corrected δ-Kohn-Sham scheme for semiempirical prediction of absolute X-ray photoelectron energies in molecules and solids. Phys. Rev. B 94, 041112 (2016).
de Réotier, P. D. & Yaouanc, A. Muon spin rotation and relaxation in magnetic materials. J. Phys. Condens. Matter 9, 9113 (1997).
Möller, J. S., Ceresoli, D., Lancaster, T., Marzari, N. & Blundell, S. J. Quantum states of muons in fluorides. Phys. Rev. B 87, 121108 (2013).
Bernardini, F., Bonfà, P., Massidda, S. & De Renzi, R. Ab initio strategy for muon site assignment in wide band gap fluorides. Phys. Rev. B 87, 115148 (2013).
Blundell, S. J. et al. Electronic structure calculations for muon spectroscopy. Electron. Struct. 7, 023001 (2025).
Onuorah, I. J. et al. Automated computational workflows for muon spin spectroscopy. Digital Discov. 4, 523–538 (2025).
Onuorah, I. J. et al. Positivemuon/aiida-muon: v1.0.3, https://doi.org/10.5281/zenodo.14594493 (2025).
Bonfà, P., Frassineti, J., Isah, M. M., Onuorah, I. J. & Sanna, S. UNDI: an open-source library to simulate muon-nuclear interactions in solids. Computer Phys. Commun. 260, 107719 (2021).
Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).
Marrazzo, A. et al. Wannier-function software ecosystem for materials simulations. Rev. Mod. Phys. 96, 045008 (2024).
Damle, A., Lin, L. & Ying, L. Compressed representation of Kohn–Sham orbitals via selected columns of the density matrix. J. Chem. Theory Comput. 11, 1463–1469 (2015).
Vitale, V. et al. Automated high-throughput Wannierisation. npj Comput. Mater. 6, 66 (2020).
Qiao, J., Pizzi, G. & Marzari, N. Projectability disentanglement for accurate and automated electronic-structure Hamiltonians. npj Comput. Mater. 9, 208 (2023).
Biberacher, W. Shubnikov-de Haas and de Haas-van Alphen Techniques. Encycl. Condens. Matter Phys. 4, 228–236 (2005).
Bergemann, C. Fermi Surface Measurements. Encyclopedia of Condensed Matter Physics 185–192 (Elsevier, 2005).
Anisimov, V., Zaanen, J. & Andersen, O. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991).
Liechtenstein, A., Anisimov, V. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467 (1995).
Dudarev, S., Botton, G., Savrasov, S., Humphreys, C. & Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).
Campo, V. L. & Cococcioni, M. Extended DFT+ U+ V method with on-site and inter-site electronic interactions. J. Phys. Condens. Matter 22, 055602 (2010).
Bastonero, L. et al. First-principles Hubbard parameters with automated and reproducible workflows. npj Comput. Mater. 11, 183 (2025).
Timrov, I., Marzari, N. & Cococcioni, M. Hubbard parameters from density-functional perturbation theory. Phys. Rev. B 98, 085127 (2018).
Timrov, I., Marzari, N. & Cococcioni, M. Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations. Phys. Rev. B 103, 045141 (2021).
Timrov, I., Marzari, N. & Cococcioni, M. HP–A code for the calculation of Hubbard parameters using density-functional perturbation theory. Computer Phys. Commun. 279, 108455 (2022).
Otero-de-la-Roza, A., Johnson, E. R. & Luaña, V. Critic2: a program for real-space analysis of quantum chemical interactions in solids. Computer Phys. Commun. 185, 1007–1018 (2014).
Wang, X. Weas widget. https://github.com/superstar54/weas-widget (Weas, 2025).
Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).
aiidalab-empa-surfaces. https://github.com/nanotech-empa/aiidalab-empa-surfaces (2025).
Du, D., Baird, T. J., Bonella, S. & Pizzi, G. OSSCAR, an open platform for collaborative development of computational tools for education in science. Computer Phys. Commun. 282, 108546 (2023).
Du, D., Baird, T. J., Eimre, K., Bonella, S. & Pizzi, G. Jupyter widgets and extensions for education and research in computational physics and chemistry. Computer Phys. Commun. 305, 109353 (2024).
PSI Laboratory for Materials Simulations. Course “Electronic-structure simulations for user communities at large-scale facilities”, 3-9 April 2025, Villigen PSI, Switzerland. https://indico.psi.ch/event/17436/ (2025).
Krasner, G. E. & Pope, S. T. A description of the model-view-controller user interface paradigm in the Smalltalk-80 system. J. Object-Oriented Program. 1, 26–49 (1988).
Gamma, E., Helm, R., Johnson, R. & Vlissides, J.Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994).
Prandini, G. et al. A Standard Solid State Pseudopotentials (SSSP) library optimized for precision and efficiency. Materials Cloud Archive 2023.65 https://doi.org/10.24435/materialscloud:f3-ym (2023).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Bobzien, L. et al. Layer-Dependent charge-state lifetime of single Se vacancies in WSe2. Phys. Rev. Lett. 134, 076201 (2025).
Acknowledgements
We gratefully thank Carl Simon Adorf for initial contributions and developments to the QE app. We thank the AiiDA team for their continuous support and contributions to the AiiDA framework, which underpins the QE app, the QE developers for their ongoing efforts in maintaining and improving the QE code, which is the computational engine behind the app, and all users who tested the app and provided valuable feedback, including Nicola Colonna, Thomas J. Hicken, Jonas A. Krieger, Stanislav Nikitin and Tom Fennell. XW, EB, MBo, AOG, MBe, DD, SPH, NP, JQ, TR, CJS, IT, AVY, JY, NM, CAP and GP acknowledge financial support by the NCCR MARVEL, a National Center of Competence in Research, funded by the Swiss National Science Foundation (grant number 205602). EB, CAP and GP acknowledge financial support by the Open Research Data Program of the ETH Board (project “PREMISE”: Open and Reproducible Materials Science Research). EM, DP and NM acknowledge support by the MaX European Center of Excellence – Materials design at the eXascale (www.max-centre.eu), of which QE is a lighthouse code; MaX is supported by the European High Performance Computing Joint Undertaking and participating countries (grant No. 101093374). PNOG and DP acknowledge financial support by the European Union - NextGenerationEU through the Italian Ministry of University and Research under PNRR - M4C2I1.4 ICSC - Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing (Grant No. CN00000013) through the Innovation Grant ASGARD. LB and NM acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy (EXC 2077, No. 390741603, University Allowance, University of Bremen) and Lucio Colombi Ciacchi, the host of the “U Bremen Excellence Chair Program”. NP, JY and GP acknowledge financial support by the Swiss National Science Foundation (SNSF) Project Funding (grant 200021E_206190 “FISH4DIET”). IT acknowledges financial support by the Swiss National Science Foundation (SNSF) Project Funding (grant 200021-227641 and 200021-236507). MBe, XW, JY and GP acknowledge financial support by the SwissTwins project, funded by the Swiss State Secretariat for Education, Research and Innovation (SERI). DD and GP acknowledge financial support by the EPFL Open Science Fund via the OSSCAR project. XW, PNOG, MAHB, EM, DP, NM and GP acknowledge financial support by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 957189 (BIG-MAP), also part of the BATTERY 2030+ initiative under grant agreement No. 957213. JY, NM and GP acknowledge financial support by the MARKETPLACE project funded by Horizon 2020 under the H2020-NMBP-25-2017 call (Grant No. 760173). DH acknowledges financial support by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 803718 (SINDAM) and the UK Research and Innovation (UKRI) EPSRC grant ref. EP/X026973/1. PB, RDR and IJO acknowledge financial support by the PNRR MUR project ECS-00000033-ECOSISTER and from University of Parma through the action “Bando di Ateneo 2023 per la ricerca”. We acknowledge access to Piz Daint and Alps at the Swiss National Supercomputing Center (CSCS), Switzerland under the MARVEL’s share with the project IDs mr32 and mr33. This work was further supported by grants from the Swiss National Supercomputing Center (CSCS) under project IDs lp18, s1267 and s1295 on Alps. We acknowledge ISCRA, ECOSISTER and ICSC for awarding access to the LEONARDO supercomputer, hosted by CINECA (Italy).
Author information
Authors and Affiliations
Contributions
Conceptualization: X.W., E.B., M.Bo., A.O.G., A.V.Y., J.Y., N.M., C.A.P., and G.P. Methodology: X.W., E.B., M.Bo., A.O.G., L.B., M.Be., P.B., R.D.R,. D.D., P.N.O.G., M.A.H.B., D.H., S.P.H., E.M., I.J.O., N.P., D.P., J.Q., T.R., C.J.S., I.T., A.V.Y., J.Y., N.M., C.A.P., and G.P. Software: X.W., E.B., M.Bo., A.O.G., L.B., M.Be., P.B., D.D., P.N.O.G., M.A.H.B., D.H., S.P.H., I.J.O., N.P., D.P., J.Q., T.R., C.J.S., I.T., A.V.Y., J.Y., C.A.P., and G.P. Validation: X.W., E.B., M.Bo., A.O.G., D.P., J.Y., C.A.P., and G.P. Investigation: X.W., E.B., M.Bo., A.O.G., and J.Y. Resources: R.D.R., E.M., D.P., N.M., C.A.P., and G.P. Writing - original draft: X.W., E.B., M.Bo., and A.O.G. Writing - review & editing: X.W., E.B., M.Bo., A.O.G., L.B., M.Be., P.B., R.D.R., P.N.O.G., M.A.H.B., D.H., E.M., I.J.O., N.P., D.P., J.Q., T.R., I.T., A.V.Y., J.Y., N.M., C.A.P., and G.P. Visualization: X.W., E.B., M.Bo., A.O.G., P.N.O.G., M.A.H.B. T.R., A.V.Y., and J.Y. Supervision: R.D.R., E.M., D.P., N.M., C.A.P., and G.P. Project administration: N.M., C.A.P., and G.P. Funding acquisition: R.D.R., E.M., D.P., N.M., C.A.P., and G.P.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Wang, X., Bainglass, E., Bonacci, M. et al. Making atomistic materials calculations accessible with the AiiDAlab Quantum ESPRESSO app. npj Comput Mater (2026). https://doi.org/10.1038/s41524-025-01936-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41524-025-01936-4