Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Computational Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj computational materials
  3. articles
  4. article
Revealing the diffusion mechanism of Cs in amorphous and polycrystalline SiC by actively trained moment tensor potentials
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 January 2026

Revealing the diffusion mechanism of Cs in amorphous and polycrystalline SiC by actively trained moment tensor potentials

  • Jiaxuan Li1,2,
  • Nikita Rybin2,3,
  • Taowei Wang1,
  • Alexander Shapeev2,3,
  • Xiaotong Chen1 &
  • …
  • Bing Liu1 

npj Computational Materials , Article number:  (2026) Cite this article

  • 995 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Physics

Abstract

The diffusion mechanism of Cs in high energy grain boundaries (HEGBs) of silicon carbide (SiC) remains unsolved due to the lack of reliable and computationally efficient for long time-scale diffusion simulations interatomic potentials. Constructing machine learning interatomic potentials (MLIPs) for complex HEGB structures is challenging as their sizes exceed ab initio computational capacity. Therefore, we proposed a workflow to develop moment tensor potentials (MTPs), which facilitates the extraction of unknown regions from HEGBs and enables efficient active training. Our developed MTPs allowed us to perform simulations of Cs diffusion in amorphous SiC and HEGBs. Simulations show that Cs diffuses following a cage-breaking mechanism. Radial distribution functions, Voronoi analysis and electronic structure calculations further elucidate local atomic environments and weak interactions governing Cs mobility. This work provides a generalizable workflow to train MLIPs for complex structures and atomic insights for modeling fission product behaviors.

Similar content being viewed by others

A machine-learned interatomic potential for silica and its relation to empirical models

Article Open access 28 April 2022

Transferable machine learning model for multi-target nanoscale simulations in hydrogen-carbon system from crystal to amorphous

Article Open access 03 May 2025

Multiscale, mechanistic modeling of cesium transport in silicon carbide for TRISO fuel performance prediction

Article Open access 19 July 2025

Data availability

Files with parameterized MTP potentials, parameterized ACE potential, fine-tuned MACE-OMAT-0, training sets, and computational models can be obtained from the public repository: https://github.com/JiaxuanLi-THU/MTP-SiC-Cs.

References

  1. Locatelli, G., Mancini, M. & Todeschini, N. Generation IV nuclear reactors: current status and future prospects. Energy Policy 61, 1503–1520 (2013).

    Google Scholar 

  2. Kania, M. J., Nabielek, H., Verfondern, K. & Allelein, H.-J. Testing of HTR UO2 TRISO fuels in AVR and in material test reactors. J. Nucl. Mater. 441, 545–562 (2013).

    Google Scholar 

  3. Demkowicz, P. A., Liu, B. & Hunn, J. D. Coated particle fuel: historical perspectives and current progress. J. Nucl. Mater. 515, 434–450 (2019).

    Google Scholar 

  4. Malherbe, J. B. Diffusion of fission products and radiation damage in SiC. J. Phys. D Appl. Phys. 46, 473001 (2013).

    Google Scholar 

  5. Simon, P.-C. A. et al. Multiscale, mechanistic modeling of cesium transport in silicon carbide for triso fuel performance prediction. npj Comput. Mater. 11, 238 (2025).

    Google Scholar 

  6. Chen, Y. & Schuh, C. A. Diffusion on grain boundary networks: percolation theory and effective medium approximations. Acta mater 54, 4709–4720 (2006).

    Google Scholar 

  7. Kirchhofer, R., Hunn, J. D., Demkowicz, P. A., Cole, J. I. & Gorman, B. P. Microstructure of triso coated particles from the AGR-1 experiment: SiC grain size and grain boundary character. J. Nucl. Mater. 432, 127–134 (2013).

    Google Scholar 

  8. Cancino-Trejo, F., López-Honorato, E., Walker, R. C. & Ferrer, R. S. Grain-boundary type and distribution in silicon carbide coatings and wafers. J. Nucl. Mater. 500, 176–183 (2018).

    Google Scholar 

  9. Rabone, J., Lopez-Honorato, E. & Van Uffelen, P. Silver and cesium diffusion dynamics at the β-SiC σ5 grain boundary investigated with density functional theory molecular dynamics and metadynamics. J. Phys. Chem. A 118, 915–926 (2014).

    Google Scholar 

  10. Ko, H., Szlufarska, I. & Morgan, D. Cs diffusion in SiC high-energy grain boundaries. J. Appl. Phys. 122, 105901 (2017).

    Google Scholar 

  11. Keblinski, P., Phillpot, S., Wolf, D. & Gleiter, H. Thermodynamic criterion for the stability of amorphous intergranular films in covalent materials. Phys. Rev. Lett. 77, 2965 (1996).

    Google Scholar 

  12. Szlufarska, I., Nakano, A. & Vashishta, P. A crossover in the mechanical response of nanocrystalline ceramics. Science 309, 911–914 (2005).

    Google Scholar 

  13. Rabone, J. & López-Honorato, E. Density functional theory metadynamics of silver, caesium and palladium diffusion at β-SiC grain boundaries. J. Nucl. Mater. 458, 56–63 (2015).

    Google Scholar 

  14. Ko, H., Deng, J., Szlufarska, I. & Morgan, D. Ag diffusion in SiC high-energy grain boundaries: Kinetic monte carlo study with first-principle calculations. Comput. Mater. Sci. 121, 248–257 (2016).

    Google Scholar 

  15. Chen, N. et al. Analytical bond-order potential for silver, palladium, ruthenium and iodine bulk diffusion in silicon carbide. J. Phys. Condens. Matter 32, 085702 (2019).

    Google Scholar 

  16. Wang, Q. et al. Diffusion and thermo-driven migration of silver, palladium, and ruthenium nanoparticles in cubic SiC matrix using molecular dynamics. Int. J. Heat. Mass Transf. 197, 123359 (2022).

    Google Scholar 

  17. Kubo, A. & Umeno, Y. Machine-learning-based atomistic model analysis on high-temperature compressive creep properties of amorphous silicon carbide. Materials 14, 1597 (2021).

    Google Scholar 

  18. Podryabinkin, E. V. & Shapeev, A. V. Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017).

    Google Scholar 

  19. Wood, B. M. et al. Uma: a family of universal models for atoms. Preprint at https://doi.org/10.48550/arXiv.2506.23971 (2025).

  20. Batatia, I. et al. A foundation model for atomistic materials chemistry. J. Chem. Phys. 163, 184110 (2025).

    Google Scholar 

  21. Sosso, G. C., Deringer, V. L., Elliott, S. R. & Csányi, G. Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials. Mol. Simul. 44, 866–880 (2018).

    Google Scholar 

  22. Deringer, V. L. & Csányi, G. Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B 95, 094203 (2017).

    Google Scholar 

  23. Rosset, L. A., Drabold, D. A. & Deringer, V. L. Signatures of paracrystallinity in amorphous silicon from machine-learning-driven molecular dynamics. Nat. Commun. 16, 2360 (2025).

    Google Scholar 

  24. Zuo, Y. et al. Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 124, 731–745 (2020).

    Google Scholar 

  25. Shapeev, A. V. Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Modeling Simul 14, 1153–1173 (2016).

    Google Scholar 

  26. Podryabinkin, E., Garifullin, K., Shapeev, A. & Novikov, I. Mlip-3: active learning on atomic environments with moment tensor potentials. J. Chem. Phys. 159, 084112 (2023).

    Google Scholar 

  27. Podryabinkin, E. V. et al. Nanohardness from first principles with active learning on atomic environments. J. Chem. Theory Comput. 18, 1109–1121 (2022).

    Google Scholar 

  28. Lysogorskiy, Y., Bochkarev, A., Mrovec, M. & Drautz, R. Active learning strategies for atomic cluster expansion models. Phys. Rev. Mater. 7, 043801 (2023).

    Google Scholar 

  29. Shuang, F. et al. Modeling extensive defects in metals through classical potential-guided sampling and automated configuration reconstruction. npj Comput. Mater. 11, 118 (2025).

    Google Scholar 

  30. Zhang, L., Csányi, G., Van Der Giessen, E. & Maresca, F. Atomistic fracture in bcc iron revealed by active learning of Gaussian approximation potential. npj Comput. Mater. 9, 217 (2023).

    Google Scholar 

  31. Hodapp, M. & Shapeev, A. In operando active learning of interatomic interaction during large-scale simulations. Mach. Learn. Sci. Technol. 1, 045005 (2020).

    Google Scholar 

  32. Mismetti, L. & Hodapp, M. Automated atomistic simulations of dissociated dislocations with ab initio accuracy. Phys. Rev. B 109, 094120 (2024).

    Google Scholar 

  33. Kong, L. et al. Overcoming the size limit of first principles molecular dynamics simulations with an in-distribution substructure embedding active learner. Preprint at https://doi.org/10.48550/arXiv.2311.08177 (2023).

  34. Erhard, L. C., Rohrer, J., Albe, K. & Deringer, V. L. Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning. Nat. Commun. 15, 1927 (2024).

    Google Scholar 

  35. Novikov, I. S., Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. The MLIP package: moment tensor potentials with MPI and active learning. Mach. Learn. Sci. Technol. 2, 025002 (2020).

    Google Scholar 

  36. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B-Condens. Matter Mater. Phys. 87, 184115 (2013).

    Google Scholar 

  37. Himanen, L. et al. Dscribe: library of descriptors for machine learning in materials science. Comput. Phys. Commun. 247, 106949 (2020).

    Google Scholar 

  38. Lim, J. et al. Molecular dynamics study of silicon carbide using an ab initio-based neural network potential: effect of composition and temperature on crystallization behavior. J. Phys. Chem. C. 127, 22692–22703 (2023).

    Google Scholar 

  39. Wang, Y., Fan, Z., Qian, P., Ala-Nissila, T. & Caro, M. A. Structure and pore size distribution in nanoporous carbon. Chem. Mater. 34, 617–628 (2022).

    Google Scholar 

  40. Drautz, R. Atomic cluster expansion for accurate and transferable interatomic potentials. Phys. Rev. B 99, 014104 (2019).

    Google Scholar 

  41. Batatia, I., Kovacs, D. P., Simm, G. N. C., Ortner, C. & Csanyi, G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. Adv. Neural Inform. Process. Syst. https://openreview.net/forum?id=YPpSngE-ZU (2022).

  42. Batatia, I. et al. The design space of E(3)-equivariant atom-centered interatomic potentials. Nat. Mach. Intell. 7, 56–67 (2025).

    Google Scholar 

  43. Minato, K. et al. Release behavior of metallic fission products from HTGR fuel particles at 1600 to 1900 °C. J. Nucl. Mater. 202, 47–53 (1993).

    Google Scholar 

  44. Amian, W. & Stöver, D. Diffusion of silver and cesium in silicon-carbide coatings of fuel particles for high-temperature gas-cooled reactors. Nucl. Technol. 61, 475–486 (1983).

    Google Scholar 

  45. Allelein, H., Biedermann, P. & Stoever, D. Cs Release from TRISO fuel particles. Tech. Rep., Kernforschungsanlage Juelich GmbH, Germany, Institute fuer Reaktorentwicklung (1980).

  46. Fukuda, K., Yamagishi, S., Ikawa, K. & Shiba, K. Research and development of HTGR fuel at JAERI. Tech. Rep., Japan Atomic Energy Research Institution (1989).

  47. Moormann, R. & Verfondern, K. Methodik umfassender probabilistischer sicherheitsanalysen fur zukunftige htr-anlagenkonzepte-ein statusbericht (stand 1986). band 3: Spaltproduktfreisetzung. Tech. Rep., Institut für Nukleare Sicherheitsforschung (1987).

  48. Verfondern, K. & Müller, D. Modelling of fission product release behavior from HTR spherical fuel elements under accident conditions. Tech. Rep., Forschungszentrum Jülich GmbH, Germany, Institute für Sicherheitsforschung und Reaktortechnik (1991).

  49. Hart, E. On the role of dislocations in bulk diffusion. Acta Metall 5, 597 (1957).

    Google Scholar 

  50. Stukowski, A. Computational analysis methods in atomistic modeling of crystals. JOM 66, 399–407 (2014).

    Google Scholar 

  51. Shrader, D., Szlufarska, I. & Morgan, D. Cs diffusion in cubic silicon carbide. J. Nucl. Mater. 421, 89–96 (2012).

    Google Scholar 

  52. Wei, K. et al. Interactions between silver-palladium alloy and silicon carbide cladding layer in triso fuel: An in-depth analysis. J. Eur. Ceram. Soc. 44, 4362–4375 (2024).

    Google Scholar 

  53. Wen, H., van Rooyen, I. J., Hunn, J. D. & Gerczak, T. J. Electron microscopy study of Pd, Ag, and Cs in carbon areas in the locally corroded SiC layer in a neutron-irradiated TRISO fuel particle. J. Eur. Ceram. Soc. 38, 4173–4188 (2018).

    Google Scholar 

  54. Jiang, C., Ke, J.-H., Simon, P.-C. A., Jiang, W. & Aagesen Jr, L. K. Atomistic and mesoscale simulations to determine effective diffusion coefficient of fission products in SiC. Report no. INL/EXT-21-64633. Tech. Rep., Idaho National Laboratory (INL) (2021).

  55. Ishimaru, M., Bae, I.-T., Hirotsu, Y., Matsumura, S. & Sickafus, K. E. Structural relaxation of amorphous silicon carbide. Phys. Rev. Lett. 89, 055502 (2002).

    Google Scholar 

  56. Ishimaru, M. et al. Direct observations of thermally induced structural changes in amorphous silicon carbide. J. Appl. Phys. 104, 033503 (2008).

    Google Scholar 

  57. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  58. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    Google Scholar 

  59. Tang, W., Sanville, E. & Henkelman, G. A grid-based bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Google Scholar 

  60. Vineyard, G. H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957).

    Google Scholar 

  61. de Souza, V. K. & Wales, D. J. Energy landscapes for diffusion: analysis of cage-breaking processes. J. Chem. Phys. 129, 164507 (2008).

    Google Scholar 

  62. He, H., Deshpande, M., Brown, R. E., Pandey, R. & Pernisz, U. C. Molecular modeling of water diffusion in amorphous SiC. J. Appl. Phys. 98, 023519 (2005).

    Google Scholar 

  63. Mistry, M. et al. Modelling the interactions and diffusion of NO in amorphous SiO2. Model. Simul. Mater. Sci. Eng. 29, 035008 (2021).

    Google Scholar 

  64. Christensen, R., Persson, K. A. & Smedskjaer, M. M. Structural origin of disorder-induced ion conduction in NaFePO4 cathode materials. J. Mater. Chem. A 13, 24619–24632 (2025).

    Google Scholar 

  65. Sørensen, S. S., Smedskjær, M. M. & Micoulaut, M. Evidence for complex dynamics in glassy fast ion conductors: the case of sodium thiosilicates. J. Phys. Chem. B 127, 10179–10188 (2023).

    Google Scholar 

  66. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Google Scholar 

  67. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  68. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  69. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  70. Parrinello, M. & Rahman, A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45, 1196 (1980).

    Google Scholar 

  71. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Google Scholar 

  72. Tersoff, J. Chemical order in amorphous silicon carbide. Phys. Rev. B 49, 16349–16352 (1994).

    Google Scholar 

  73. Heera, V. et al. Density and structural changes in SiC after amorphization and annealing. Appl. Phys. Lett. 70, 3531–3533 (1997).

    Google Scholar 

  74. Rino, J. P. et al. Short-and intermediate-range structural correlations in amorphous silicon carbide: A molecular dynamics study. Phys. Rev. B-Condens. Matter Mater. Phys. 70, 045207 (2004).

    Google Scholar 

  75. Vashishta, P., Kalia, R. K., Nakano, A. & Rino, J. P. Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J. Appl. Phys. 101, 103515 (2007).

    Google Scholar 

  76. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Google Scholar 

  77. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Google Scholar 

  78. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Google Scholar 

  79. Cancino-Trejo, F. et al. Grain boundary complexions in silicon carbide. J. Am. Ceram. Soc. 101, 1009–1013 (2018).

    Google Scholar 

  80. Thompson, A. P., Aktulga, H. M. & Berger, R. et al. Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Google Scholar 

  81. Stukowski, A. Visualization and analysis of atomistic simulation data with ovito–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Google Scholar 

  82. Hjorth Larsen, A., Jørgen Mortensen, J. & Blomqvist, J. et al. The atomic simulation environment-a python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Google Scholar 

  83. Dwaraknath, S. & Was, G. The diffusion of cesium, strontium, and europium in silicon carbide. J. Nucl. Mater. 476, 155–167 (2016).

    Google Scholar 

Download references

Acknowledgements

This work was financially support by the National S&T Major Project (Grant No. ZX060901), CNNC's young talents research project, and the grant for research centers in the field of AI provided by the Ministry of Economic Development of the Russian Federation in accordance with the agreement 000000C313925P4F0002 and the agreement with Skoltech No.139-10-2025-033. J.L. acknowledge financial support from China Scholarship Council. This work made use of the resources of the SuperComputing Network and Center of High Performance Computing, Tsinghua University. J.L. thanks Olga Chalykh and Evgeny Podryabinkin for valuable discussions on MTP training.

Author information

Authors and Affiliations

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China

    Jiaxuan Li, Taowei Wang, Xiaotong Chen & Bing Liu

  2. Skolkovo Institute of Science and Technology, Moscow, Russia

    Jiaxuan Li, Nikita Rybin & Alexander Shapeev

  3. Digital Materials LLC, Odintsovo, Russia

    Nikita Rybin & Alexander Shapeev

Authors
  1. Jiaxuan Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Nikita Rybin
    View author publications

    Search author on:PubMed Google Scholar

  3. Taowei Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Alexander Shapeev
    View author publications

    Search author on:PubMed Google Scholar

  5. Xiaotong Chen
    View author publications

    Search author on:PubMed Google Scholar

  6. Bing Liu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.L. and N.R. conducted all the computational works. J.L., N.R., and T.W. drafted the paper. A.S., X.C., and B.L. acquired funding and supervised the entire project. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Xiaotong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Rybin, N., Wang, T. et al. Revealing the diffusion mechanism of Cs in amorphous and polycrystalline SiC by actively trained moment tensor potentials. npj Comput Mater (2026). https://doi.org/10.1038/s41524-025-01944-4

Download citation

  • Received: 29 September 2025

  • Accepted: 20 December 2025

  • Published: 09 January 2026

  • DOI: https://doi.org/10.1038/s41524-025-01944-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Machine Learning Interatomic Potentials in Computational Materials

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • Open Access
  • About the Editors
  • Contact
  • Editorial policies
  • Journal Metrics
  • About the partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Computational Materials (npj Comput Mater)

ISSN 2057-3960 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing